【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据

发布时间:2024年01月15日

Flink 系列文章

一、Flink 专栏

Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。

  • 1、Flink 部署系列
    本部分介绍Flink的部署、配置相关基础内容。

  • 2、Flink基础系列
    本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。

  • 3、Flik Table API和SQL基础系列
    本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。

  • 4、Flik Table API和SQL提高与应用系列
    本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。

  • 5、Flink 监控系列
    本部分和实际的运维、监控工作相关。

二、Flink 示例专栏

Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。

两专栏的所有文章入口点击:Flink 系列文章汇总索引



本文介绍了Flink 维表的第一种方式,通过初始化的静态数据实现。

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文除了maven依赖外,没有其他依赖。

本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)

一、maven依赖及数据结构

1、maven依赖

本文的所有示例均依赖本部分的pom.xml内容,可能针对下文中的某些示例存在过多的引入,根据自己的情况进行删减。

<properties>
	<encoding>UTF-8</encoding>
	<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
	<maven.compiler.source>1.8</maven.compiler.source>
	<maven.compiler.target>1.8</maven.compiler.target>
	<java.version>1.8</java.version>
	<scala.version>2.12</scala.version>
	<flink.version>1.17.0</flink.version>
</properties>

<dependencies>
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-clients</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-java</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-table-common</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-streaming-java</artifactId>
		<version>${flink.version}</version>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-table-api-java-bridge</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-csv</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-json</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-planner -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-table-planner_2.12</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-api-java-uber -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-table-api-java-uber</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-table-runtime</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-connector-jdbc</artifactId>
		<version>3.1.0-1.17</version>
	</dependency>
	<dependency>
		<groupId>mysql</groupId>
		<artifactId>mysql-connector-java</artifactId>
		<version>5.1.38</version>
	</dependency>
	<dependency>
		<groupId>com.google.guava</groupId>
		<artifactId>guava</artifactId>
		<version>32.0.1-jre</version>
	</dependency>
	<!-- flink连接器 -->
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-connector-kafka</artifactId>
		<version>${flink.version}</version>
	</dependency>
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kafka -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-sql-connector-kafka</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-compress -->
	<dependency>
		<groupId>org.apache.commons</groupId>
		<artifactId>commons-compress</artifactId>
		<version>1.24.0</version>
	</dependency>
	<dependency>
		<groupId>org.projectlombok</groupId>
		<artifactId>lombok</artifactId>
		<version>1.18.2</version>
	</dependency>
	<dependency>
		<groupId>org.apache.bahir</groupId>
		<artifactId>flink-connector-redis_2.12</artifactId>
		<version>1.1.0</version>
		<exclusions>
			<exclusion>
				<artifactId>flink-streaming-java_2.12</artifactId>
				<groupId>org.apache.flink</groupId>
			</exclusion>
			<exclusion>
				<artifactId>flink-runtime_2.12</artifactId>
				<groupId>org.apache.flink</groupId>
			</exclusion>
			<exclusion>
				<artifactId>flink-core</artifactId>
				<groupId>org.apache.flink</groupId>
			</exclusion>
			<exclusion>
				<artifactId>flink-java</artifactId>
				<groupId>org.apache.flink</groupId>
			</exclusion>
			<exclusion>
				<groupId>org.apache.flink</groupId>
				<artifactId>flink-table-api-java</artifactId>
			</exclusion>
			<exclusion>
				<groupId>org.apache.flink</groupId>
				<artifactId>flink-table-api-java-bridge_2.12</artifactId>
			</exclusion>
			<exclusion>
				<groupId>org.apache.flink</groupId>
				<artifactId>flink-table-common</artifactId>
			</exclusion>
			<exclusion>
				<groupId>org.apache.flink</groupId>
				<artifactId>flink-table-planner_2.12</artifactId>
			</exclusion>
		</exclusions>
	</dependency>
	<!-- https://mvnrepository.com/artifact/com.alibaba/fastjson -->
	<dependency>
		<groupId>com.alibaba</groupId>
		<artifactId>fastjson</artifactId>
		<version>2.0.43</version>
	</dependency>
</dependencies>

2、数据结构

本示例仅仅为实现需求:将订单中uId与用户id进行关联,然后输出Tuple2<Order, String>。

  • 事实流 order
    // 事实表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class Order {
        private Integer id;
        private Integer uId;
        private Double total;
    }
  • 维度流 user
    // 维表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class User {
        private Integer id;
        private String name;
        private Double balance;
        private Integer age;
        private String email;
    }

3、数据源

事实流数据有几种,具体见示例部分,比如socket、redis、kafka等
维度表流有几种,具体见示例部分,比如静态数据、mysql、socket、kafka等。
如此,实现本文中的示例就需要准备好相应的环境,即mysql、redis、kafka、netcat等。

4、验证结果

本文提供的所有示例均为验证通过的示例,测试的数据均在每个示例中,分为事实流、维度流和运行结果进行注释,在具体的示例中关于验证不再赘述。

二、维表来源于初始化的静态数据

1、说明

通过定义一个类实现RichMapFunction,在open()中读取维表数据加载到内存中,在事实流map()方法中与维表数据进行关联。

由于数据存储于内存中,所以只适合小数据量并且维表数据更新频率不高的情况下使用。虽然可以在open中定义一个定时器定时更新维表,但是还是存在维表更新不及时的情况或资源开销较大的情况。一般如果数据量较小且不大会变(或变化影响也不大)的情况下,理想选择之一。

2、示例:将事实流与维表进行关联

import java.util.HashMap;
import java.util.Map;

import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/*
 * @Author: alanchan
 * @LastEditors: alanchan
 * @Description: 采用在RichMapfunction类的open方法中将维表数据加载到内存
 */
public class TestJoinDimFromStaticDataDemo {
    // 维表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class User {
        private Integer id;
        private String name;
        private Double balance;
        private Integer age;
        private String email;
    }

    // 事实表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class Order {
        private Integer id;
        private Integer uId;
        private Double total;
    }

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // order 事实流
        DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)
                .map(o -> {
                    String[] lines = o.split(",");
                    return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));
                });

        DataStream<Tuple2<Order, String>> result = orderDs.map(new RichMapFunction<Order, Tuple2<Order, String>>() {
            Map<Integer, User> userDim = null;

            // 维表-静态数据,本处使用的是匿名内部类实现的
            @Override
            public void open(Configuration parameters) throws Exception {
                userDim = new HashMap<>();
                userDim.put(1001, new User(1001, "alan", 20d, 18, "alan.chan.chn@163.com"));
                userDim.put(1002, new User(1002, "alanchan", 22d, 20, "alan.chan.chn@163.com"));
                userDim.put(1003, new User(1003, "alanchanchn", 23d, 22, "alan.chan.chn@163.com"));
                userDim.put(1004, new User(1004, "alan_chan", 21d, 19, "alan.chan.chn@163.com"));
                userDim.put(1005, new User(1005, "alan_chan_chn", 23d, 21, "alan.chan.chn@163.com"));
            }

            @Override
            public Tuple2<Order, String> map(Order value) throws Exception {
                return new Tuple2(value, userDim.get(value.getUId()).getName());
            }

        });

        result.print();
        // nc 输入
        // 1,1004,345
        // 2,1001,678
        
        // 控制台输出
        // 2> (TestJoinDimFromStaticData.Order(id=1, uId=1004, total=345.0),alan_chan)
        // 3> (TestJoinDimFromStaticData.Order(id=2, uId=1001, total=678.0),alan)
        env.execute("TestJoinDimFromStaticData");
    }
}

以上,本文介绍了Flink 维表的第一种方式,通过初始化的静态数据实现。

本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)

文章来源:https://blog.csdn.net/chenwewi520feng/article/details/135449490
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。