阅读时间:2023-11-22
年份:2017
作者:C. Gallicchio 比萨大学计算机科学系终身教授助理教授,A. Micheli,比萨大学计算机科学系
期刊: ArXiv
引用量:68
这是两个大牛的论文,两位作者也是在2017到2018年期间发表了多篇ESN的研究。该文概述了DeepESN(深度回声状态网络)在开发、分析和应用方面的进展。DeepESN是一种专门用于处理时间数据的深度递归神经网络(RNN)。它是Echo State Network(ESN)模型的延伸,ESN模型是一种设计高效训练的RNN的先进方法。DeepESN利用堆叠的递归层的分层组合来开发时间信息的多个时间尺度表示。
这篇论文讨论了DeepESN的属性和动力学,以及其优点和缺点。它还探讨了层叠在RNN架构设计中的作用及其对网络动力学的影响。作者回答了与堆叠层次的好处、RNN层叠的架构效果以及使用有效训练的储备计算(RC)方法设计深度递归模型的潜力有关的一些基本问题。
这些创新点表明DeepESN模型在处理时间数据以及结构化数据方面具有潜力,并且相比传统的储层网络结构有一定的优势。
参考文献:
[25] C. Gallicchio, A. Micheli, L. Pedrelli, Deep reservoir computing: A critical experimental analysis
[26] C. Gallicchio, A. Micheli, Deep reservoir computing: A critical analysis, in: Proceedings of the 24th European Symposium on Artificial Neural Networks (ESANN)
[27] C. Gallicchio, A. Micheli, Why layering in Recurrent Neural Networks? a DeepESN survey, in: Proceedings of the 2018 IEEE International Joint Conference on Neural Networks (IJCNN),
[36]C. Gallicchio, A. Micheli, Echo state property of deep reservoir computing networks., Cognitive Computation
[39] C. Gallicchio, A. Micheli, L. Pedrelli, Hierarchical temporal representation in linear reservoir computing, in: A. Esposito, M. Faundez-Zanuy, F. C. Morabito, E. Pasero (Eds.),
[44] C. Gallicchio, A. Micheli, L. Pedrelli, Design of Deep Echo State Networks, Neural Networks 108 (2018) 33–47.
[45] C. Gallicchio, A. Micheli, Deep Reservoir Neural Networks for Trees, Information Sciences 480 (2019) 174–193.
[46] C. Gallicchio, A. Micheli, Deep Tree Echo State Networks, in: Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), IEEE, 2018, pp. 499–506.
[47] C. Gallicchio, A. Micheli, Fast and deep graph neural networks., in: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), 2020, pp. 3898–3905.
[48] C. Gallicchio, A. Micheli, Graph echo state networks, in: The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE, 2010, pp. 1–8.
[49] C. Gallicchio, Short-term Memory of Deep RNN, in: Proceedings of the 26th European Symposium on Artificial Neural Networks (ESANN), 2018, pp. 633–638.
[50] C. Gallicchio, A. Micheli, Experimental analysis of deep echo state networks for ambient assisted living, in: Proceedings of the 3rd Workshop on Artificial Intelligence for Ambient Assisted Living (AIAAL 2017), colocated with the 16th International Conference of the Italian Association for Artificial Intelligence (AIIA 2017), 2017.
[51] C. Gallicchio, A. Micheli, L.Pedrelli, Deep Echo State Networks for Diagnosis of Parkinson’s Disease, in: Proceedings of the 26th European Symposium on Artificial Neural Networks (ESANN), 2018, pp. 397–402.
[52]C. Gallicchio, A. Micheli, L. Pedrelli, Comparison between DeepESNs and gated RNNs on multivariate time-series prediction, in: 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2019), i6doc. com publication, 2019.
介绍了一种深度回声状态网络(Deep Echo State Network,DeepESN)模型。与标准的浅层ESN模型类似,DeepESN由动态储备组件和前馈读出部分组成。储备组件将输入历史嵌入到丰富的状态表示中,并利用储备提供的状态编码计算输出。深度ESN的储备被组织成一个堆叠的循环层的层次结构,在每个时间步骤中,状态计算从第一层开始,直到储备架构中的最高层。每个层的输出作为下一层的输入。该模型可以被视为一个输入驱动的离散时间非线性动力系统,其中全局状态的演化由状态转移函数F决定。每个层的状态动态由F控制。通过使用漏积分器储备单元,并忽略偏差项,论文给出了DeepESN储备的数学描述。与浅层ESN/RNN相比,DeepESN的储备架构被限制在图中所示的三种连接约束条件下,这些约束条件对信息流和状态动力学产生影响。深度ESN架构可以被看作是对相应的单层ESN的简化,降低了绝对数量的循环权重。然而,这种特殊的架构组织方式影响了时间信息的处理。
Deep Echo State Network(DeepESN)的分层储备器架构。与浅层ESN/RNN相比,DeepESN的储备器架构被解释为具有相同总循环单元数量的标准浅层ESN/RNN的受限版本。包含几个约束,以获得分层架构。首先,所有从输入层到高于第1层的储备器层的连接都被删除(影响逐渐远离输入层的循环单元逐渐感知到外部输入信息的方式)。其次,所有来自较高层的连接到较低层的连接也被删除(这会影响信息的流动和网络状态的子部分的动态)。这些约束使DeepESN与浅层ESN/RNN相比具有不同的结构特点,并提供了一种层次化组成的储备器架构。
https://github.com/lucasburger/pyRC?utm_source=catalyzex.com
注意这篇开头提到的两位作者是ESN储层计算的大神,在这篇论文中就引用了自己的21篇相关论文。建议根据相关研究总结的论文,跟读研究一下。根据谷歌学术发表的论文可以看到,作者对于ESN的研究跨度是从2010年到2020年。
有源码的论文,可以复现和在这些基础上做进一步的改进。