? ? ?std::function 是 c++ 11 的新特性?,包含在头文件<functional>中,为了更方便的调用函数而引入。
? ? ? ?std::function 是一个函数包装器(function wrapper),可以包装任何可调用实体,包括如下几种:
? ? ? ?普通函数、函数指针、成员函数、静态函数、lambda 表达式 与 仿函数对象。
? ? ?std::function 对象实例可以拷贝与移动,可以使用指定的调用特征来调用目标元素。当 std::function 对象实例未包含任何实体时,调用该 std::function 对象实例时,会抛出std::bad_function_call异常。
? ? ? std::bind 是 c++ 11 的新特性,其作用与其字面名称相似,是为了绑定函数的某些参数。
std::bind 是一种延迟计算的思想,将可调用函数对象保存起来,在需要调用时再去调用。可以绑定
仿函数对象、普通函数与成员函数,其参数可以支持占位符。
占位符:
? ? ? ?std::placeholders::_1 是一个占位符,绑定函数的第一个参数,std::placeholders::_2?是一个占位符,绑定函数的第二个参数,std::placeholders::_n?是一个占位符,绑定函数的第 n 个参数。
template<typename _Signature>
class function;
/**
* @brief Primary class template for std::function.
* @ingroup functors
*
* Polymorphic function wrapper.
*/
template<typename _Res, typename... _ArgTypes>
class function<_Res(_ArgTypes...)>
: public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
private _Function_base
{
template<typename _Func,
typename _Res2 = typename result_of<_Func&(_ArgTypes...)>::type>
struct _Callable : __check_func_return_type<_Res2, _Res> { };
// Used so the return type convertibility checks aren't done when
// performing overload resolution for copy construction/assignment.
template<typename _Tp>
struct _Callable<function, _Tp> : false_type { };
template<typename _Cond, typename _Tp>
using _Requires = typename enable_if<_Cond::value, _Tp>::type;
public:
typedef _Res result_type;
// [3.7.2.1] construct/copy/destroy
/**
* @brief Default construct creates an empty function call wrapper.
* @post @c !(bool)*this
*/
function() noexcept
: _Function_base() { }
/**
* @brief Creates an empty function call wrapper.
* @post @c !(bool)*this
*/
function(nullptr_t) noexcept
: _Function_base() { }
/**
* @brief %Function copy constructor.
* @param __x A %function object with identical call signature.
* @post @c bool(*this) == bool(__x)
*
* The newly-created %function contains a copy of the target of @a
* __x (if it has one).
*/
function(const function& __x);
/**
* @brief %Function move constructor.
* @param __x A %function object rvalue with identical call signature.
*
* The newly-created %function contains the target of @a __x
* (if it has one).
*/
function(function&& __x) noexcept : _Function_base()
{
__x.swap(*this);
}
/**
* @brief Builds a %function that targets a copy of the incoming
* function object.
* @param __f A %function object that is callable with parameters of
* type @c T1, @c T2, ..., @c TN and returns a value convertible
* to @c Res.
*
* The newly-created %function object will target a copy of
* @a __f. If @a __f is @c reference_wrapper<F>, then this function
* object will contain a reference to the function object @c
* __f.get(). If @a __f is a NULL function pointer or NULL
* pointer-to-member, the newly-created object will be empty.
*
* If @a __f is a non-NULL function pointer or an object of type @c
* reference_wrapper<F>, this function will not throw.
*/
template<typename _Functor,
typename = _Requires<__not_<is_same<_Functor, function>>, void>,
typename = _Requires<_Callable<_Functor>, void>>
function(_Functor);
/**
* @brief %Function assignment operator.
* @param __x A %function with identical call signature.
* @post @c (bool)*this == (bool)x
* @returns @c *this
*
* The target of @a __x is copied to @c *this. If @a __x has no
* target, then @c *this will be empty.
*
* If @a __x targets a function pointer or a reference to a function
* object, then this operation will not throw an %exception.
*/
function&
operator=(const function& __x)
{
function(__x).swap(*this);
return *this;
}
/**
* @brief %Function move-assignment operator.
* @param __x A %function rvalue with identical call signature.
* @returns @c *this
*
* The target of @a __x is moved to @c *this. If @a __x has no
* target, then @c *this will be empty.
*
* If @a __x targets a function pointer or a reference to a function
* object, then this operation will not throw an %exception.
*/
function&
operator=(function&& __x) noexcept
{
function(std::move(__x)).swap(*this);
return *this;
}
template<typename _Functor>
_Requires<_Callable<typename decay<_Functor>::type>, function&>
operator=(_Functor&& __f)
{
function(std::forward<_Functor>(__f)).swap(*this);
return *this;
}
/// @overload
template<typename _Functor>
function&
operator=(reference_wrapper<_Functor> __f) noexcept
{
function(__f).swap(*this);
return *this;
}
/**
* @brief Invokes the function targeted by @c *this.
* @returns the result of the target.
* @throws bad_function_call when @c !(bool)*this
*
* The function call operator invokes the target function object
* stored by @c this.
*/
_Res operator()(_ArgTypes... __args) const;
};
// Trait type used to remove std::bind() from overload set via SFINAE
// when first argument has integer type, so that std::bind() will
// not be a better match than ::bind() from the BSD Sockets API.
template<typename _Tp, typename _Tp2 = typename decay<_Tp>::type>
using __is_socketlike = __or_<is_integral<_Tp2>, is_enum<_Tp2>>;
template<bool _SocketLike, typename _Func, typename... _BoundArgs>
struct _Bind_helper
: _Bind_check_arity<typename decay<_Func>::type, _BoundArgs...>
{
typedef typename decay<_Func>::type __func_type;
typedef _Bind<__func_type(typename decay<_BoundArgs>::type...)> type;
};
// Partial specialization for is_socketlike == true, does not define
// nested type so std::bind() will not participate in overload resolution
// when the first argument might be a socket file descriptor.
template<typename _Func, typename... _BoundArgs>
struct _Bind_helper<true, _Func, _BoundArgs...>
{ };
/**
* @brief Function template for std::bind.
* @ingroup binders
*/
template<typename _Func, typename... _BoundArgs>
inline typename
_Bind_helper<__is_socketlike<_Func>::value, _Func, _BoundArgs...>::type
bind(_Func&& __f, _BoundArgs&&... __args)
{
typedef _Bind_helper<false, _Func, _BoundArgs...> __helper_type;
return typename __helper_type::type(std::forward<_Func>(__f),
std::forward<_BoundArgs>(__args)...);
}
template<typename _Result, typename _Func, typename... _BoundArgs>
struct _Bindres_helper
: _Bind_check_arity<typename decay<_Func>::type, _BoundArgs...>
{
typedef typename decay<_Func>::type __functor_type;
typedef _Bind_result<_Result,
__functor_type(typename decay<_BoundArgs>::type...)>
type;
};
/**
* @brief Function template for std::bind<R>.
* @ingroup binders
*/
template<typename _Result, typename _Func, typename... _BoundArgs>
inline
typename _Bindres_helper<_Result, _Func, _BoundArgs...>::type
bind(_Func&& __f, _BoundArgs&&... __args)
{
typedef _Bindres_helper<_Result, _Func, _BoundArgs...> __helper_type;
return typename __helper_type::type(std::forward<_Func>(__f),
std::forward<_BoundArgs>(__args)...);
}
?
#include<iostream>
#include<functional>
int (*func_ptr)(int);
int func(int a)
{
std::cout << "func: " << a << endl;
return a;
}
void f(int n1, int n2, int n3, const int& n4, int n5) {
std::cout << n1 << ' ' << n2 << ' ' << n3 << ' ' << n4 << ' ' << n5 << std::endl;
}
template<typename T>
T fun2(T a){
return a + 2;
}
struct my_add{
int operator()(int x){
return x + 9;
}
};
struct Foo
{
static void func11()
{
std::cout << "static void func1......" << std::endl;
}
static void func12(int val)
{
std::cout << "static void func1( val "<< val << "......" << std::endl;
}
void func2(int val)
{
std::cout << "void func2(val "<< val << ")......" << std::endl;
}
};
int main()
{
// 1. 包装函数
std::function<int(int)> f1 = func;
f1(66);
std::cout << sizeof (f1) << std::endl;
// 2. 包装函数指针
func_ptr = func;
func_ptr(88);
// 3. 包装模板函数
f1 = fun2<int>;
f1(688);
// 4. 包装仿函数
f1 = my_add();
std::cout << f1(87) << std::endl;
// 5. 包装lambda 函数
auto tmp_func = [](int a)->int
{
return a;
};
f1 = tmp_func;
std::cout << f1(8888) << std::endl;
// 6 包装静态函数
std::function<void(void)> f61 = Foo::func11;
f61();
std::function<void(int)> f62 = Foo::func12;
f62(666);
// 7 包装类成员函数
Foo foo;
std::function<void(int)> f7 = std::bind(&Foo::func2, foo, std::placeholders::_1);
f7(888);
// bind
auto f2 = std::bind(f, std::placeholders::_3, std::placeholders::_2, std::placeholders::_1, 4, 5);
f2(3, 2, 1);
std::function<void(int, int, int)> ff = f2;
ff(3, 2, 1);
std::cout << "------ main end ------" << std::endl;
return 0;
}
输出: