描述符:
文件描述符:设备文件、管道文件
socket描述符
select:位运算实现 监控的描述符数量有限(32位机1024,64位机2048,监控对象有限) 效率差
poll:链表实现,监控的描述符数量不限 效率差
epoll:效率最高,监控的描述符数量不限
select
int select(int nfds, fd_set *readfds, fd_set *writefds,fd_set *exceptfds, struct timeval *timeout);
/* 功能:监听多个描述符,阻塞等待有一个或者多个文件描述符,准备就绪。
内核将没有准备就绪的文件描述符,从集合中清掉了。
参数: nfds 最大文件描述符数 ,加1
readfds 读文件描述符集合
writefds 写文件描述符集合
exceptfds 其他异常的文件描述符集合
timeout 超时时间(NULL)
返回值:当timeout为NULL时返回0,成功:准备好的文件描述的个数 出错:-1
? 当timeout不为NULL时,如超时设置为0,则select为非阻塞,超时设置 > 0,则无描述符可被操作的情况下阻塞指定长度的时间
*/
void FD_CLR(int fd, fd_set *set);
//功能:将fd 从集合中清除掉
?
int ?FD_ISSET(int fd, fd_set *set);
//功能:判断fd 是否存在于集合中
void FD_SET(int fd, fd_set *set);
//功能:将fd 添加到集合中
?
void FD_ZERO(fd_set *set);
//功能:将集合清零
?
//使用模型:
?
while(1)
{
? ?/*得到最大的描述符maxfd*/
? ?/*FD_ZERO清空描述符集合*/
/*将被监控描述符加到相应集合rfds里 FD_SET*/
? ?/*设置超时*/
? ?ret = select(maxfd+1,&rfds,&wfds,NULL,NULL);
? ?if(ret < 0)
? {
? ? ? ?if(errno == EINTR)//错误时信号引起的
? ? ? {
? ? ? continue; ?
? ? ? }
? ? ? ?else
? ? ? {
? ? ? ? ? ?break;
? ? ? }
? }
? ?else if(ret == 0)
? {//超时
? ? ? ?//.....
? }
? ?else
? { //> 0 ret为可被操作的描述符个数
? ? ? ?if(FD_ISSET(fd1,&rfds))
? ? ? {//读数据
? ? ? ? ? ?//....
? ? ? }
? ? ? ?if(FD_ISSET(fd2,&rfds))
? ? ? {//读数据
? ? ? ? ? ?//....
? ? ? }
? ? ? ?///.....
? ? ? ?if(FD_ISSET(fd1,&wfds))
? ? ? {//写数据
? ? ? ? ? ?//....
? ? ? }
? }
}
驱动函数XXX_POLL,其实也是帮我进行监控的
我们需要告诉设备什么情况是数据可读,什么情况是有可写入数据
void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p);
/*功能:将等待队列头添加至poll_table表中
?参数:struct file :设备文件
?Wait_queue_head_t :等待队列头
?Poll_table :poll_table表
*/
?
/*该函数与select、poll、epoll_wait函数相对应,协助这些多路监控函数判断本设备是否有数据可读写*/
unsigned int xxx_poll(struct file *filp, poll_table *wait) //函数名初始化给struct file_operations的成员.poll
{
? ?unsigned int mask = 0;
? ?/*
? 1. 将所有等待队列头加入poll_table表中
? 2. 判断是否可读,如可读则mask |= POLLIN | POLLRDNORM;
? 3. 判断是否可写,如可写则mask |= POLLOUT | POLLWRNORM;
? ?*/
? ?
? ?return mask;
}
mychar.c
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/poll.h>
#include "mychar.h"
#define BUF_LEN 100
#define MYCHAR_DEV_CNT 3
int major = 11;
int minor = 0;
int mychar_num = MYCHAR_DEV_CNT;
//新建结构体类型
struct mychar_dev
{
struct cdev mydev;
char mydef_buf[BUF_LEN]; //相当于结构体的私有变量
int curlen; //相当于结构体的私有变量
wait_queue_head_t rq; //等待读队列
wait_queue_head_t wq; //等待写队列
};
struct mychar_dev gmydev;
int mychar_open(struct inode *pnode, struct file *pfile)
{
//利用private_data私有变量来指向全局变量结构体地址
pfile->private_data = (void*)(container_of(pnode->i_cdev,struct mychar_dev,mydev));
printk("mychar_open is called\n");
return 0;
}
int mychar_close(struct inode *pnode, struct file *pfile)
{
printk("mychar_close is called\n");
return 0;
}
ssize_t mychar_read(struct file *filp, char __user *pbuf, size_t count, loff_t *ppos)
{
int ret = 0;
int size = 0;
//获取全家变量结构体地址
struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;
if(pmydev->curlen <= 0)
{
if(filp->f_flags & O_NONBLOCK)
{//非阻塞
printk("O_NONBLOCK No Data Read\n");
return -1;
}
else
{//阻塞
ret = wait_event_interruptible(pmydev->rq,pmydev->curlen > 0);
if(ret)
{
printk("Wake up by signal\n");
return -ERESTARTSYS;
}
}
}
if(count > pmydev->curlen)
{
size = pmydev->curlen;
}
else
{
size = count;
}
//将内核空间中的数据复制到用户空间
ret = copy_to_user(pbuf,pmydev->mydef_buf,size);
if(ret)
{
printk("copy_to_user failed\n");
return -1;
}
//读完之后把后面的内容再拷贝过来,同时更新curlen
memcpy(pmydev->mydef_buf,pmydev->mydef_buf+size,pmydev->curlen - size);
pmydev->curlen = pmydev->curlen - size;
wake_up_interruptible(&pmydev->wq);
return size;
}
ssize_t mychar_write (struct file *filp, const char __user *pbuf, size_t count, loff_t *ppos)
{
int size = 0;
int ret = 0;
//获取全家变量结构体地址
struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;
if(pmydev->curlen >= BUF_LEN)
{
if(filp->f_flags & O_NONBLOCK)
{
printk("O_NONBLOCK Can not write data\n");
return -1;
}
else
{
ret = wait_event_interruptible(pmydev->wq,pmydev->curlen < BUF_LEN);
if(ret)
{
printk("wake up by signal\n");
return -ERESTARTSYS;
}
}
}
if(count > BUF_LEN - pmydev->curlen)
{
size = BUF_LEN - pmydev->curlen;
}
else
{
size = count;
}
//将用户空间中的数据复制到内核空间中
ret = copy_from_user(pmydev->mydef_buf + pmydev->curlen, pbuf, size);
if(ret)
{
printk("copy_from_user failed\n");
return -1;
}
//更新curlen
pmydev->curlen = pmydev->curlen + size;
wake_up_interruptible(&pmydev->rq);
return size;
}
long mychar_ioctl(struct file *filp, unsigned int cmd,unsigned long arg)
{
int __user *pret = (int *)arg;
int maxlen = BUF_LEN;
int ret = 0;
struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;
switch(cmd)
{
case MYCHAR_IOCTL_GET_MAXLEN:
ret = copy_to_user(pret,&maxlen,sizeof(int));
if(ret)
{
printk("copy_to_user MAXLEN failed\n");
return -1;
}
break;
case MYCHAR_IOCTL_GET_CURLEN:
ret = copy_to_user(pret,&pmydev->curlen,sizeof(int));
if(ret)
{
printk("copy_to_user CURLEN failed\n");
return -1;
}
break;
default:
printk("The cmd is unknow\n");
return -1;
}
return 0;
}
/*该函数与select、poll、epoll_wait函数相对应,协助这些多路监控函数判断本设备是否有数据可读写*/
unsigned int mychar_poll(struct file *filp, poll_table *ptb)
{
struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;
unsigned int mask = 0;
//将等待队列头添加至poll_table表中
poll_wait(filp, &pmydev->rq,ptb);
poll_wait(filp, &pmydev->wq,ptb);
//mutex_lock(&pmydev->lock);
if(pmydev->curlen > 0) //有数据可读
{
mask |= POLLIN | POLLRDNORM;
}
if(pmydev->curlen < BUF_LEN) //有空间可写
{
mask |= POLLOUT | POLLWRNORM;
}
//mutex_unlock(&pmydev->lock);
return mask;
}
//结构体初始化:部分变量赋值初始化
struct file_operations myops = {
.owner = THIS_MODULE,
.open = mychar_open,
.release = mychar_close,
.read = mychar_read,
.write = mychar_write,
.unlocked_ioctl = mychar_ioctl,
.poll = mychar_poll,
};
int mychar_init(void)
{
int ret = 0;
dev_t devno = MKDEV(major, minor);
/* 申请设备号 */
ret = register_chrdev_region(devno, mychar_num, "mychar");
if (ret) {
ret = alloc_chrdev_region(&devno, minor, mychar_num, "mychar");
if (ret) {
printk("get devno failed\n");
return -1;
}
major = MAJOR(devno); // 容易遗漏,注意
}
/* 给struct cdev对象指定操作函数集 */
cdev_init(&gmydev.mydev, &myops);
/* 将 struct cdev对象添加到内核对应的数据结构里 */
gmydev.mydev.owner = THIS_MODULE;
cdev_add(&gmydev.mydev, devno, 1);
//初始化队列
init_waitqueue_head(&(gmydev.rq));
init_waitqueue_head(&(gmydev.wq));
return 0;
}
void __exit mychar_exit(void)
{
dev_t devno = MKDEV(major, minor);
cdev_del(&gmydev.mydev);
unregister_chrdev_region(devno, mychar_num);
}
//表示支持GPL的开源协议
MODULE_LICENSE("GPL");
module_init(mychar_init);
module_exit(mychar_exit);
主要实现以下部分功能:?
编译报错,缺的头文件可以通过grep搜索
grep poll_table /home/linux/Linux_4412/kernel/linux-3.14/include/ -r -n
?mychar.h
#ifndef MY_CHAR_H
#define MY_CHAR_H
#include <asm/ioctl.h>
#define MY_CHAR_MAGIC 'k'
#define MYCHAR_IOCTL_GET_MAXLEN _IOR(MY_CHAR_MAGIC,1,int*)
#define MYCHAR_IOCTL_GET_CURLEN _IOR(MY_CHAR_MAGIC,2,int*)
#endif
testmychar_select.c
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/select.h>
#include <errno.h>
#include "mychar.h"
#include <stdio.h>
int main(int argc,char *argv[])
{
int fd = -1;
char buf[8] = "";
int ret = 0;
fd_set rfds;
if(argc < 2)
{
printf("The argument is too few\n");
return 1;
}
fd = open(argv[1],O_RDWR);
if(fd < 0)
{
printf("open %s failed\n",argv[1]);
return 2;
}
while(1)
{
//使用FD_ZERO宏初始化一个文件描述符集rfds,并使用FD_SET宏将文件描述符fd添加到rfds集合中。
FD_ZERO(&rfds);
FD_SET(fd,&rfds);
//调用select函数对文件描述符进行监控,如果文件描述符可读,则返回一个大于0的数值,表示有文件描述符就绪;如果出错,则返回-1
ret = select(fd + 1,&rfds,NULL,NULL,NULL);
if(ret < 0)
{
//如果select返回值小于0,并且错误码为EINTR,表示select被中断,可以继续循环等待;否则,打印错误信息并退出循环。
if(errno == EINTR)
{
continue;
}
else
{
printf("select error\n");
break;
}
}
//如果文件描述符fd在rfds集合中可读,调用read函数从fd中读取8字节的数据,并将其存储在缓冲区buf中
if(FD_ISSET(fd,&rfds))
{
read(fd,buf,8);
printf("buf=%s\n",buf);
}
}
close(fd);
fd = -1;
return 0;
}
Makefile
ifeq ($(KERNELRELEASE),)
ifeq ($(ARCH),arm)
KERNELDIR ?= /home/linux/Linux_4412/kernel/linux-3.14
ROOTFS ?= /opt/4412/rootfs
else
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
endif
PWD := $(shell pwd)
modules:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
modules_install:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules INSTALL_MOD_PATH=$(ROOTFS) modules_install
clean:
rm -rf *.o *.ko .*.cmd *.mod.* modules.order Module.symvers .tmp_versions
else
CONFIG_MODULE_SIG=n
obj-m += mychar.o
obj-m += mychar_poll.o
endif
命令lsmod | grep char
用于列出当前加载的内核模块
命令cat /proc/devices | grep char
用于查看系统中已注册的设备类型。
执行效果
signal(SIGIO, input_handler); //注册信号处理函数
fcntl(fd, F_SETOWN, getpid());//将描述符设置给对应进程,好由描述符获知PID
oflags = fcntl(fd, F_GETFL);
fcntl(fd, F_SETFL, oflags | FASYNC);//将该设备的IO模式设置成信号驱动模式
void input_handler(int signum)//应用自己实现的信号处理函数,在此函数中完成读写
{
//读数据
}
应用层模板代码?
//应用模板
int main()
{
int fd = open("/dev/xxxx",O_RDONLY);
fcntl(fd, F_SETOWN, getpid());
oflags = fcntl(fd, F_GETFL);
fcntl(fd, F_SETFL, oflags | FASYNC);
signal(SIGIO,xxxx_handler);
//......
}
void xxxx_handle(int signo)
{//读写数据
}
实现模板
/*设备结构中添加如下成员*/
struct fasync_struct *pasync_obj;
/*应用调用fcntl设置FASYNC时调用该函数产生异步通知结构对象,并将其地址设置到设备结构成员中*/
static int hello_fasync(int fd, struct file *filp, int mode) //函数名初始化给struct file_operations的成员.fasync
{
struct hello_device *dev = filp->private_data;
return fasync_helper(fd, filp, mode, &dev->pasync_obj);
}
/*写函数中有数据可读时向应用层发信号*/
if (dev->pasync_obj)
kill_fasync(&dev->pasync_obj, SIGIO, POLL_IN); //POLL_IN代表读信号 POLL_OUT代表写信号
/*release函数中释放异步通知结构对象*/
if (dev->pasync_obj)
fasync_helper(-1, filp, 0, &dev->pasync_obj);
int fasync_helper(int fd, struct file *filp, int mode, struct fasync_struct **pp);
/*
功能:产生或释放异步通知结构对象
参数:
返回值:成功为>=0,失败负数
*/
void kill_fasync(struct fasync_struct **, int, int);
/*
功能:发信号
参数:
struct fasync_struct ** 指向保存异步通知结构地址的指针
int 信号?SIGIO/SIGKILL/SIGCHLD/SIGCONT/SIGSTOP
int 读写信息POLLIN、POLLOUT
*/
mychar.c
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/poll.h>
#include "mychar.h"
#define BUF_LEN 100
#define MYCHAR_DEV_CNT 3
int major = 11;
int minor = 0;
int mychar_num = MYCHAR_DEV_CNT;
//新建结构体类型
struct mychar_dev
{
struct cdev mydev;
char mydef_buf[BUF_LEN]; //相当于结构体的私有变量
int curlen; //相当于结构体的私有变量
wait_queue_head_t rq; //等待读队列
wait_queue_head_t wq; //等待写队列
struct fasync_struct *pasync_obj; //实现异步通知机制的数据结构
};
struct mychar_dev gmydev;
int mychar_open(struct inode *pnode, struct file *pfile)
{
//利用private_data私有变量来指向全局变量结构体地址
pfile->private_data = (void*)(container_of(pnode->i_cdev,struct mychar_dev,mydev));
printk("mychar_open is called\n");
return 0;
}
int mychar_close(struct inode *pnode, struct file *pfile)
{
struct mychar_dev *pmydev = (struct mychar_dev *)pfile->private_data;
printk("mychar_close is called\n");
if(pmydev->pasync_obj != NULL)
{
fasync_helper(-1,pfile,0,&pmydev->pasync_obj); //则调用fasync_helper函数来取消异步通知
}
return 0;
}
ssize_t mychar_read(struct file *filp, char __user *pbuf, size_t count, loff_t *ppos)
{
int ret = 0;
int size = 0;
//获取全家变量结构体地址
struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;
if(pmydev->curlen <= 0)
{
if(filp->f_flags & O_NONBLOCK)
{//非阻塞
printk("O_NONBLOCK No Data Read\n");
return -1;
}
else
{//阻塞
ret = wait_event_interruptible(pmydev->rq,pmydev->curlen > 0);
if(ret)
{
printk("Wake up by signal\n");
return -ERESTARTSYS;
}
}
}
if(count > pmydev->curlen)
{
size = pmydev->curlen;
}
else
{
size = count;
}
//将内核空间中的数据复制到用户空间
ret = copy_to_user(pbuf,pmydev->mydef_buf,size);
if(ret)
{
printk("copy_to_user failed\n");
return -1;
}
//读完之后把后面的内容再拷贝过来,同时更新curlen
memcpy(pmydev->mydef_buf,pmydev->mydef_buf+size,pmydev->curlen - size);
pmydev->curlen = pmydev->curlen - size;
wake_up_interruptible(&pmydev->wq);
return size;
}
ssize_t mychar_write (struct file *filp, const char __user *pbuf, size_t count, loff_t *ppos)
{
int size = 0;
int ret = 0;
//获取全家变量结构体地址
struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;
if(pmydev->curlen >= BUF_LEN)
{
if(filp->f_flags & O_NONBLOCK)
{
printk("O_NONBLOCK Can not write data\n");
return -1;
}
else
{
ret = wait_event_interruptible(pmydev->wq,pmydev->curlen < BUF_LEN);
if(ret)
{
printk("wake up by signal\n");
return -ERESTARTSYS;
}
}
}
if(count > BUF_LEN - pmydev->curlen)
{
size = BUF_LEN - pmydev->curlen;
}
else
{
size = count;
}
//将用户空间中的数据复制到内核空间中
ret = copy_from_user(pmydev->mydef_buf + pmydev->curlen, pbuf, size);
if(ret)
{
printk("copy_from_user failed\n");
return -1;
}
//更新curlen
pmydev->curlen = pmydev->curlen + size;
wake_up_interruptible(&pmydev->rq);
//数据写成功发送可读信号(同样读函数也可以实现)
if(pmydev->pasync_obj != NULL)
{
kill_fasync(&pmydev->pasync_obj,SIGIO,POLL_IN);
}
return size;
}
long mychar_ioctl(struct file *filp, unsigned int cmd,unsigned long arg)
{
int __user *pret = (int *)arg;
int maxlen = BUF_LEN;
int ret = 0;
struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;
switch(cmd)
{
case MYCHAR_IOCTL_GET_MAXLEN:
ret = copy_to_user(pret,&maxlen,sizeof(int));
if(ret)
{
printk("copy_to_user MAXLEN failed\n");
return -1;
}
break;
case MYCHAR_IOCTL_GET_CURLEN:
ret = copy_to_user(pret,&pmydev->curlen,sizeof(int));
if(ret)
{
printk("copy_to_user CURLEN failed\n");
return -1;
}
break;
default:
printk("The cmd is unknow\n");
return -1;
}
return 0;
}
/*该函数与select、poll、epoll_wait函数相对应,协助这些多路监控函数判断本设备是否有数据可读写*/
unsigned int mychar_poll(struct file *filp, poll_table *ptb)
{
struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;
unsigned int mask = 0;
//将等待队列头添加至poll_table表中
poll_wait(filp, &pmydev->rq,ptb);
poll_wait(filp, &pmydev->wq,ptb);
if(pmydev->curlen > 0) //有数据可读
{
mask |= POLLIN | POLLRDNORM;
}
if(pmydev->curlen < BUF_LEN) //有空间可写
{
mask |= POLLOUT | POLLWRNORM;
}
return mask;
}
//使用pmydev->pasync_obj作为异步通知对象进行注册
int mychar_fasync(int fd,struct file *filp,int mode)
{
struct mychar_dev *pmydev = (struct mychar_dev *)filp->private_data;
return fasync_helper(fd,filp,mode,&pmydev->pasync_obj);
}
//结构体初始化:部分变量赋值初始化
struct file_operations myops = {
.owner = THIS_MODULE,
.open = mychar_open,
.release = mychar_close,
.read = mychar_read,
.write = mychar_write,
.unlocked_ioctl = mychar_ioctl,
.poll = mychar_poll,
.fasync = mychar_fasync,
};
int mychar_init(void)
{
int ret = 0;
dev_t devno = MKDEV(major, minor);
/* 申请设备号 */
ret = register_chrdev_region(devno, mychar_num, "mychar");
if (ret) {
ret = alloc_chrdev_region(&devno, minor, mychar_num, "mychar");
if (ret) {
printk("get devno failed\n");
return -1;
}
major = MAJOR(devno); // 容易遗漏,注意
}
/* 给struct cdev对象指定操作函数集 */
cdev_init(&gmydev.mydev, &myops);
/* 将 struct cdev对象添加到内核对应的数据结构里 */
gmydev.mydev.owner = THIS_MODULE;
cdev_add(&gmydev.mydev, devno, 1);
//初始化队列
init_waitqueue_head(&(gmydev.rq));
init_waitqueue_head(&(gmydev.wq));
return 0;
}
void __exit mychar_exit(void)
{
dev_t devno = MKDEV(major, minor);
cdev_del(&gmydev.mydev);
unregister_chrdev_region(devno, mychar_num);
}
//表示支持GPL的开源协议
MODULE_LICENSE("GPL");
module_init(mychar_init);
module_exit(mychar_exit);
mychar.c代码实现步骤
1 添加异步通知数据结构体?
2 注册异步通知对象的模板函数
3 关闭释放异步通知处理对象
?4 写函数中发送信号
mychar.h
#ifndef MY_CHAR_H
#define MY_CHAR_H
#include <asm/ioctl.h>
#define MY_CHAR_MAGIC 'k'
#define MYCHAR_IOCTL_GET_MAXLEN _IOR(MY_CHAR_MAGIC,1,int*)
#define MYCHAR_IOCTL_GET_CURLEN _IOR(MY_CHAR_MAGIC,2,int*)
#endif
?Makefile
ifeq ($(KERNELRELEASE),)
ifeq ($(ARCH),arm)
KERNELDIR ?= /home/linux/Linux_4412/kernel/linux-3.14
ROOTFS ?= /opt/4412/rootfs
else
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
endif
PWD := $(shell pwd)
modules:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
modules_install:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules INSTALL_MOD_PATH=$(ROOTFS) modules_install
clean:
rm -rf *.o *.ko .*.cmd *.mod.* modules.order Module.symvers .tmp_versions
else
CONFIG_MODULE_SIG=n
obj-m += mychar.o
obj-m += mychar_poll.o
endif
?testmychar_signal.c
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/select.h>
#include <errno.h>
#include <signal.h>
#include "mychar.h"
#include <stdio.h>
int fd = -1;
void sigio_handler(int signo);
int main(int argc,char *argv[])
{
int flg = 0;
if(argc < 2)
{
printf("The argument is too few\n");
return 1;
}
signal(SIGIO,sigio_handler);
fd = open(argv[1],O_RDWR);
if(fd < 0)
{
printf("open %s failed\n",argv[1]);
return 2;
}
//将文件描述符fd设置为异步通知模式,并将当前进程的PID设置为接收异步通知的进程
fcntl(fd,F_SETOWN,getpid()); //数将当前进程的PID设置为fd的拥有者
flg = fcntl(fd,F_GETFL); //取fd的标志位
flg |= FASYNC; //然后使用按位或运算符将FASYNC标志位添加到标志中
fcntl(fd,F_SETFL,flg); //将flg(即带有FASYNC标志位的标志)设置为fd的标志位,从而使fd进入异步通知模式
while(1)
{
}
close(fd);
fd = -1;
return 0;
}
void sigio_handler(int signo)
{
char buf[8] = "";
read(fd,buf,8);
printf("buf=%s\n",buf);
}
编译后插入内核模块:
?
?
小于32的信号是常规信号,在同时多个信号联系触发时,只会保留第一个。
在 Linux 中,的确有一些关于信号驱动编程的限制和不可靠性。其中一个问题是,当多个相同类型的信号连续到达时,内核只会保留一个信号,而其他的信号会被丢弃。这被称为信号的信号合并(Signal Merging)。
这种行为是为了避免信号过载和提高系统性能。如果内核为每个到达的信号都生成一个进程或线程,将会增加系统开销并降低整体效率。因此,内核决定只接收一个信号,并在处理完当前信号后向进程发送一个信号。
对于需要处理多个连续到达的信号的情况,可以使用一些技术来解决信号合并的问题。例如,在信号处理函数中,可以使用特定的系统调用(如sigaction
)来重新设置信号的处理方式,以确保每个信号都得到正确处理,而不会丢失。