[嵌入式专栏](FOC - SVPWM扇区计算Part1)

发布时间:2023年12月30日

文章目录

    • 1 . 概要
    • 2 . 扇区计算
      • 2.1 扇区Ⅰ计算
      • 2.1 扇区Ⅱ计算
      • 2.1 扇区Ⅲ计算
    • 3 . 小结


【极客技术传送门】 : https://blog.csdn.net/Engineer_LU/article/details/135149485


1 . 概要

经过扇区判断后,就知道在哪个扇区进行输出了
【Q】但是每个扇区分别输出怎样的结果呢?
【A】这篇博文详述了这个意义

2 . 扇区计算

这里一开始先把六个扇区的TxTy结果列出来,方便看到文章开头记住扇区关系,后面内容对每个扇区有 详细推导过程

扇区TxTy
3 T s U d c ( 3 2 U α ? 1 2 U β ) \frac {\sqrt3 T_s}{U_{dc}}( \frac {\sqrt3}2U_α-\frac 1 2Uβ ) Udc?3 ?Ts??(23 ??Uα??21?Uβ) 3 T s U d c U β \frac {\sqrt3 T_s}{U_{dc}}Uβ Udc?3 ?Ts??Uβ
3 T s U d c ( ? 3 2 U α + 1 2 U β ) \frac {\sqrt3 T_s}{U_{dc}}(-\frac {\sqrt3}2U_α+\frac 1 2Uβ ) Udc?3 ?Ts??(?23 ??Uα?+21?Uβ) 3 T s U d c ( 3 2 U α + 1 2 U β ) \frac {\sqrt3 T_s}{U_{dc}}( \frac {\sqrt3}2U_α+\frac 1 2Uβ ) Udc?3 ?Ts??(23 ??Uα?+21?Uβ)
3 T s U d c U β \frac {\sqrt3 T_s}{U_{dc}}Uβ Udc?3 ?Ts??Uβ ? 3 T s U d c ( 3 2 U α + 1 2 U β ) -\frac {\sqrt3 T_s}{U_{dc}}( \frac {\sqrt3}2U_α+\frac 1 2Uβ ) ?Udc?3 ?Ts??(23 ??Uα?+21?Uβ)
? 3 T s U d c U β -\frac {\sqrt3 T_s}{U_{dc}}Uβ ?Udc?3 ?Ts??Uβ 3 T s U d c ( ? 3 2 U α + 1 2 U β ) \frac {\sqrt3 T_s}{U_{dc}}(- \frac {\sqrt3}2U_α+\frac 1 2Uβ ) Udc?3 ?Ts??(?23 ??Uα?+21?Uβ)
? 3 T s U d c ( 3 2 U α + 1 2 U β ) -\frac {\sqrt3 T_s}{U_{dc}}( \frac {\sqrt3}2U_α+\frac 1 2Uβ ) ?Udc?3 ?Ts??(23 ??Uα?+21?Uβ) ? 3 T s U d c ( ? 3 2 U α + 1 2 U β ) -\frac {\sqrt3 T_s}{U_{dc}}( -\frac {\sqrt3}2U_α+\frac 1 2Uβ ) ?Udc?3 ?Ts??(?23 ??Uα?+21?Uβ)
3 T s U d c ( 3 2 U α + 1 2 U β ) \frac {\sqrt3 T_s}{U_{dc}}( \frac {\sqrt3}2U_α+\frac 1 2Uβ ) Udc?3 ?Ts??(23 ??Uα?+21?Uβ) ? 3 T s U d c U β -\frac {\sqrt3 T_s}{U_{dc}}Uβ ?Udc?3 ?Ts??Uβ

>这里讲一下扇区计算的概念
【Q】前面计算了许多步骤最终把UαUβ送进SVPWM,那么怎么把UαUβ与SVPWM产生关联?
【A】答案是基于之前相电压合成关系代入
U α = U m c o s θ U_α = U_mcosθ Uα?=Um?cosθ
U β = U m s i n θ U_β = U_msinθ Uβ?=Um?sinθ
U m = 2 3 U d c U_m = \frac 2 3 U_{dc} Um?=32?Udc?, 为什么是 2 3 U d c \frac 2 3U_{dc} 32?Udc?因为在SVPWM控制中,硬件的三组开关管里每一组时时刻刻都在开关状态,而形成回路中最多两路进,一路出,因此同一时刻相对 U d c U_{dc} Udc?最多用到了 2 3 \frac 2 3 32?

在这里插入图片描述


接下来如上图矢量圆所示,扇区Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ, Ⅵ,矢量分别为U4 (100),U6 (110),U2 (010),U3 (011),U1 (001),U5 (101)
另外图中的α和β就是上述描述的UαUβ。

我们想要在这个 矢量圆 里输出N个不同大小,方向的矢量从而来控制电机力矩,但是我们只有六个基本矢量U4-U6-U2-U3-U1-U5,那怎么输出我们想要的矢量?这里我们只要基于六个基本矢量进行合成就可以了,具体根据每个扇区相邻的两个基本矢量进行合成,以下开始对每个扇区计算合成矢量。

在这里插入图片描述

这里以扇区一举例,如图所示把合成的矢量U设为 U o u t U_{out} Uout?目标矢量,之前提到了
U α = U m c o s θ U_α = U_mcosθ Uα?=Um?cosθ
U β = U m s i n θ U_β = U_msinθ Uβ?=Um?sinθ
那么这里的 U m Um Um就是我们 U r e f U_{ref} Uref?

【Q】接下来分析 U m c o s θ = U_mcosθ = Um?cosθ= U m s i n θ = U_msinθ = Um?sinθ=
【A】根据上图标注 :

  1. U m c o s θ U_mcosθ Um?cosθ 为 红线1+红线2,其中红线1可以由U4这个矢量得到,红线2为U6经过cos60°可以得到,这里为什么要分为红线1与红线2,直接cosθ不就可以直接由U4矢量输出完成了吗,答案是因为要考虑后面 U m s i n θ U_msinθ Um?sinθ的计算, U m s i n θ U_msinθ Um?sinθ以图中加辅助线,可以通过sin60°U6得到 U m s i n θ U_msinθ Um?sinθ的结果。

  2. U m s i n θ U_msinθ Um?sinθ 为 绿线,刚刚描述了这些线段的意义,以及图中加辅助线的意义,因此通过sin60°U6可以得到 U m s i n θ U_msinθ Um?sinθ的结果。

【Q】我们芯片可以输出PWM高分辨率控制开关管,那么怎么把PWM与上面的公式逻辑结合起来?
【A】上面可以100, 110, 010, 011, 001, 101这六个组合分别对应了三组开关管的状态,“1”为上管开启,下管关闭,“0”为下管开启,上管关闭,上下管为互补状态,一个总周期 T s = T x + T y + T n T_s=T_x+T_y+T_n Ts?=Tx?+Ty?+Tn? 组成,这里 T x T y T_xT_y Tx?Ty?为对应矢量状态PWM输出, T n Tn Tn为不输出的周期,既然TxTy跟基本矢量产生联系,而UαUβ也跟基本矢量产生联系,那么TxTy就能跟UαUβ产生联系,这里也正式进入了SVPWM的计算联系点,接下来把六个矢量状态列出对应PWM(Tx,Ty)对应关系,这里的关系是人为设定的。

TxTy
U4(100)U6(110)
U2(010)U3(011)
U1(001)U5(101)

【Q】矢量的大小怎么确定?
【A】芯片输出的PWM来控制这些状态的占空比就可以实现矢量中的大小

【Q】矢量的方向怎么确定?
【A】这时候就要结合两个矢量的大小来“拉动”输出目标矢量,就像拔河比赛一样,两边谁拉的力多一点,绳子中间就往哪边靠,这里的 “绳子中间“ 就是 矢量合成

搞懂以上逻辑后,就可以计算出 目标矢量 了,而SVPWM之所以成为SVPWM就是因为芯片输出PWM来控制基本矢量状态,从而合成出“空间目标矢量 U o u t U_{out} Uout?”。


2.1 扇区Ⅰ计算

在这里插入图片描述
根据上图解析出以下公式 :

U α = U o u t c o s θ = 2 3 U d c ? T x T s + 2 3 U d c ? T y T s ? c o s 60 ° U_α = U_{out}cosθ = \frac23U_{dc}*\frac {T_x} {T_s}+\frac23U_{dc}*\frac {T_y} {T_s}*cos60° Uα?=Uout?cosθ=32?Udc??Ts?Tx??+32?Udc??Ts?Ty???cos60°

U β = U o u t s i n θ = 2 3 U d c ? T y T s ? s i n 60 ° U_β = U_{out}sinθ = \frac23U_{dc}*\frac {T_y} {T_s} * sin60° Uβ?=Uout?sinθ=32?Udc??Ts?Ty???sin60°

可以看出Uα有涉及了Tx与Ty,而Uβ只有Ty,因此我们先求解Uβ中的Ty再代入Uα从而把Tx也求解出来


1. 解析扇区Ⅰ的 T y T_y Ty?

U β = U o u t s i n θ = 2 3 U d c ? T y T s ? s i n 60 ° U_β = U_{out}sinθ = \frac23U_{dc}*\frac {T_y} {T_s} * sin60° Uβ?=Uout?sinθ=32?Udc??Ts?Ty???sin60°

U β = 2 3 U d c ? T y T s ? 3 2 U_β = \frac23U_{dc}*\frac {T_y} {T_s} * \frac {\sqrt3}2 Uβ?=32?Udc??Ts?Ty???23 ??

U β = 3 3 U d c ? T y T s U_β = \frac {\sqrt3}3U_{dc}*\frac {T_y} {T_s} Uβ?=33 ??Udc??Ts?Ty??

U β = 1 3 U d c ? T y T s U_β = \frac 1{\sqrt3}U_{dc}*\frac {T_y} {T_s} Uβ?=3 ?1?Udc??Ts?Ty??

T y = 3 T s U d c U β T_y = \frac {\sqrt3 T_s}{U_{dc}}U_β Ty?=Udc?3 ?Ts??Uβ?


2. 解析扇区Ⅰ的 T x T_x Tx?

U α = U o u t c o s θ = 2 3 U d c ? T x T s + 2 3 U d c ? T y T s ? c o s 60 ° U_α = U_{out}cosθ = \frac23U_{dc}*\frac {T_x} {T_s}+\frac23U_{dc}*\frac {T_y} {T_s}*cos60° Uα?=Uout?cosθ=32?Udc??Ts?Tx??+32?Udc??Ts?Ty???cos60°

U α = 2 3 U d c ? T x T s + 2 3 U d c ? T y T s ? 1 2 U_α = \frac23U_{dc}*\frac {T_x} {T_s}+\frac23U_{dc}*\frac {T_y} {T_s}*\frac 1 2 Uα?=32?Udc??Ts?Tx??+32?Udc??Ts?Ty???21?

U α = 2 3 U d c 1 T s ( T x + T y 1 2 ) U_α = \frac23U_{dc}\frac1{T_s}(T_x+T_y\frac12) Uα?=32?Udc?Ts?1?(Tx?+Ty?21?)

T x = U α T s U d c 3 2 ? T y 1 2 T_x= \frac {U_αT_s}{U_{dc}} \frac 3 2-T_y\frac12 Tx?=Udc?Uα?Ts??23??Ty?21?

T x = U α T s U d c 3 2 ? 3 T s U d c U β 1 2 T_x= \frac {U_αT_s}{U_{dc}} \frac 3 2-\frac {\sqrt3 T_s}{U_{dc}}U_β\frac12 Tx?=Udc?Uα?Ts??23??Udc?3 ?Ts??Uβ?21?

T x = U α T s 3 ? 3 T s U β U d c 2 T_x= \frac { U_αT_s3-\sqrt3T_sU_β } {U_{dc}2} Tx?=Udc?2Uα?Ts?3?3 ?Ts?Uβ??

T x = 3 T s ( U α 3 ? U β ) U d c 2 T_x= \frac { \sqrt3T_s(U_α\sqrt3-U_β) } {U_{dc}2} Tx?=Udc?23 ?Ts?(Uα?3 ??Uβ?)?

T x = 3 T s U d c ( 3 2 U α ? 1 2 U β ) T_x= \frac {\sqrt3 T_s}{U_{dc}}( \frac {\sqrt3}2U_α-\frac 1 2U_β ) Tx?=Udc?3 ?Ts??(23 ??Uα??21?Uβ?)


2.1 扇区Ⅱ计算

在这里插入图片描述

根据上图解析出以下公式 :

U o u t c o s ( θ ? 60 ° ) = 2 3 U d c ? T y T s + 2 3 U d c ? T x T s ? c o s 60 ° U_{out}cos(θ-60°) = \frac23U_{dc}*\frac {T_y} {T_s}+\frac23U_{dc}*\frac {T_x} {T_s}*cos60° Uout?cos(θ?60°)=32?Udc??Ts?Ty??+32?Udc??Ts?Tx???cos60°

U o u t s i n ( θ ? 60 ° ) = 2 3 U d c ? T x T s ? s i n 60 ° U_{out}sin(θ-60°) = \frac23U_{dc}*\frac {T_x} {T_s} * sin60° Uout?sin(θ?60°)=32?Udc??Ts?Tx???sin60°

可以看出Uα有涉及了Tx与Ty,而Uβ只有Tx,因此我们先求解Uβ中的Tx再代入Uα从而把Ty也求解出来
【Q】这里为什么是 θ ? 60 ° θ-60° θ?60°
【A】因为第二扇区的范围是60-120°,我们计算第二扇区需要偏移60°,从而映射0-60°,从而对应 U α = U o u t c o s θ U_α = U_{out}cosθ Uα?=Uout?cosθ U β = U o u t s i n θ U_β = U_{out}sinθ Uβ?=Uout?sinθ


1. 解析扇区Ⅱ的 T x T_x Tx?

U o u t s i n ( θ ? 60 ° ) = 2 3 U d c ? T x T s ? s i n 60 ° U_{out}sin(θ-60°) = \frac23U_{dc}*\frac {T_x} {T_s} * sin60° Uout?sin(θ?60°)=32?Udc??Ts?Tx???sin60°

U o u t s i n ( θ ? 60 ° ) = 2 3 U d c ? T x T s ? 3 2 U_{out}sin(θ-60°) = \frac23U_{dc}*\frac {T_x} {T_s} * \frac {\sqrt3}2 Uout?sin(θ?60°)=32?Udc??Ts?Tx???23 ??

U o u t s i n ( θ ? 60 ° ) = 1 3 U d c ? T x T s U_{out}sin(θ-60°) = \frac 1 {\sqrt3}U_{dc}*\frac {T_x}{T_s} Uout?sin(θ?60°)=3 ?1?Udc??Ts?Tx??

U o u t s i n ( θ ? 60 ° ) = 1 3 U d c ? T x T s U_{out}sin(θ-60°) = \frac 1 {\sqrt3}U_{dc}*\frac {T_x}{T_s} Uout?sin(θ?60°)=3 ?1?Udc??Ts?Tx??

T x = 3 T s U d c U o u t s i n ( θ ? 60 ° ) T_x= \frac {\sqrt3T_s}{U_{dc}}U_{out}sin(θ-60°) Tx?=Udc?3 ?Ts??Uout?sin(θ?60°)

T x = 3 T s U d c U o u t ( s i n θ c o s 60 ° ? c o s θ s i n 60 ° ) T_x= \frac {\sqrt3T_s}{U_{dc}}U_{out}(sinθcos60°-cosθsin60°) Tx?=Udc?3 ?Ts??Uout?(sinθcos60°?cosθsin60°)

T x = 3 T s U d c U o u t ( 1 2 s i n θ ? 3 2 c o s θ ) T_x= \frac {\sqrt3T_s}{U_{dc}}U_{out}(\frac12sinθ-\frac{\sqrt3}2cosθ) Tx?=Udc?3 ?Ts??Uout?(21?sinθ?23 ??cosθ)

T x = 3 T s U d c ( ? 3 2 U α + 1 2 U β ) T_x=\frac {\sqrt3 T_s}{U_{dc}}( -\frac {\sqrt3}2U_α+\frac 1 2U_β ) Tx?=Udc?3 ?Ts??(?23 ??Uα?+21?Uβ?)


2. 解析扇区Ⅱ的 T y T_y Ty?

U o u t c o s ( θ ? 60 ° ) = 2 3 U d c ? T y T s + 2 3 U d c ? T x T s ? c o s 60 ° U_{out}cos(θ-60°) = \frac23U_{dc}*\frac {T_y} {T_s}+\frac23U_{dc}*\frac {T_x} {T_s}*cos60° Uout?cos(θ?60°)=32?Udc??Ts?Ty??+32?Udc??Ts?Tx???cos60°

U o u t c o s ( θ ? 60 ° ) = 2 3 U d c ? T y T s + 2 3 U d c ? T x T s ? 1 2 U_{out}cos(θ-60°) = \frac23U_{dc}*\frac {T_y} {T_s}+\frac23U_{dc}*\frac {T_x} {T_s}*\frac12 Uout?cos(θ?60°)=32?Udc??Ts?Ty??+32?Udc??Ts?Tx???21?

U o u t c o s ( θ ? 60 ° ) = 2 3 U d c ? T y T s + 1 3 U d c ? T x T s U_{out}cos(θ-60°) = \frac23U_{dc}*\frac {T_y} {T_s}+\frac13U_{dc}*\frac {T_x} {T_s} Uout?cos(θ?60°)=32?Udc??Ts?Ty??+31?Udc??Ts?Tx??

U o u t c o s ( θ ? 60 ° ) = 2 3 U d c ? T y T s + 1 3 U d c ? 3 T s U d c ( ? 3 2 U α + 1 2 U β ) T s U_{out}cos(θ-60°) = \frac23U_{dc}*\frac {T_y} {T_s}+\frac13U_{dc}*\frac {\frac {\sqrt3 T_s}{U_{dc}}( -\frac {\sqrt3}2U_α+\frac 1 2U_β )} {T_s} Uout?cos(θ?60°)=32?Udc??Ts?Ty??+31?Udc??Ts?Udc?3 ?Ts??(?23 ??Uα?+21?Uβ?)?

U o u t c o s ( θ ? 60 ° ) = 2 3 U d c ? T y T s ? 3 3 ( ? 3 2 U α + 1 2 U β ) U_{out}cos(θ-60°) = \frac23U_{dc}*\frac {T_y} {T_s} - \frac{ \sqrt3 }3( -\frac {\sqrt3}2U_α+\frac 1 2U_β ) Uout?cos(θ?60°)=32?Udc??Ts?Ty???33 ??(?23 ??Uα?+21?Uβ?)

T y = U o u t ( c o s θ c o s 60 ° + s i n θ s i n 60 ° ) ? 3 3 ( ? 3 2 U α + 1 2 U β ) 2 3 U d c T s T_y = \frac {U_{out}(cosθcos60°+sinθsin60°) - \frac{ \sqrt3 }3( -\frac {\sqrt3}2U_α+\frac 1 2U_β ) } {\frac 23U_{dc}}T_s Ty?=32?Udc?Uout?(cosθcos60°+sinθsin60°)?33 ??(?23 ??Uα?+21?Uβ?)?Ts?

T y = U α 1 2 + U β 3 2 + 1 2 U α ? 3 6 U β 2 3 U d c T s T_y = \frac {Uα\frac12+Uβ\frac{\sqrt3}{2} + \frac 12U_α-\frac {\sqrt3} 6U_β } {\frac 23U_{dc}}T_s Ty?=32?Udc?Uα21?+Uβ23 ??+21?Uα??63 ??Uβ??Ts?

T y = U α + U β 2 3 6 2 3 U d c T s T_y = \frac {Uα+Uβ\frac{2\sqrt3}{6} } {\frac 23U_{dc}}T_s Ty?=32?Udc?Uα+Uβ623 ???Ts?

T y = 3 U α + 3 U β 2 U d c T s T_y = \frac {3Uα+{\sqrt3}Uβ } {2U_{dc}}T_s Ty?=2Udc?3Uα+3 ?Uβ?Ts?

T x = 3 T s U d c ( 3 2 U α + 1 2 U β ) T_x=\frac {\sqrt3 T_s}{U_{dc}}( \frac {\sqrt3}2U_α+\frac 1 2U_β ) Tx?=Udc?3 ?Ts??(23 ??Uα?+21?Uβ?)


2.1 扇区Ⅲ计算

在这里插入图片描述

根据上图解析出以下公式 :

U o u t c o s ( θ ? 120 ° ) = 2 3 U d c ? T x T s + 2 3 U d c ? T y T s ? c o s 60 ° U_{out}cos(θ-120°) = \frac23U_{dc}*\frac {T_x} {T_s}+\frac23U_{dc}*\frac {T_y} {T_s}*cos60° Uout?cos(θ?120°)=32?Udc??Ts?Tx??+32?Udc??Ts?Ty???cos60°

U o u t s i n ( θ ? 120 ° ) = 2 3 U d c ? T y T s ? s i n 60 ° U_{out}sin(θ-120°) = \frac23U_{dc}*\frac {T_y} {T_s} * sin60° Uout?sin(θ?120°)=32?Udc??Ts?Ty???sin60°

可以看出Uα有涉及了Tx与Ty,而Uβ只有Ty,因此我们先求解Uβ中的Ty再代入Uα从而把Tx也求解出来
【Q】这里为什么是 θ ? 120 ° θ-120° θ?120°
【A】因为第二扇区的范围是120-180°,我们计算第二扇区需要偏移120°,从而映射0-60°,从而对应 U α = U o u t c o s θ U_α = U_{out}cosθ Uα?=Uout?cosθ U β = U o u t s i n θ U_β = U_{out}sinθ Uβ?=Uout?sinθ


1. 解析扇区Ⅲ的 T y T_y Ty?

U o u t s i n ( θ ? 120 ° ) = 2 3 U d c ? T y T s ? s i n 60 ° U_{out}sin(θ-120°) = \frac23U_{dc}*\frac {T_y} {T_s} * sin60° Uout?sin(θ?120°)=32?Udc??Ts?Ty???sin60°

U o u t s i n ( θ ? 120 ° ) = 2 3 U d c ? T y T s ? 3 2 U_{out}sin(θ-120°) = \frac23U_{dc}*\frac {T_y} {T_s} * \frac {\sqrt3}2 Uout?sin(θ?120°)=32?Udc??Ts?Ty???23 ??

U o u t s i n ( θ ? 120 ° ) = 1 3 U d c ? T y T s U_{out}sin(θ-120°) = \frac 1 {\sqrt3}U_{dc}*\frac {T_y}{T_s} Uout?sin(θ?120°)=3 ?1?Udc??Ts?Ty??

U o u t s i n ( θ ? 120 ° ) = 1 3 U d c ? T y T s U_{out}sin(θ-120°) = \frac 1 {\sqrt3}U_{dc}*\frac {T_y}{T_s} Uout?sin(θ?120°)=3 ?1?Udc??Ts?Ty??

T y = 3 T s U d c U o u t s i n ( θ ? 120 ° ) T_y= \frac {\sqrt3T_s}{U_{dc}}U_{out}sin(θ-120°) Ty?=Udc?3 ?Ts??Uout?sin(θ?120°)

T y = 3 T s U d c U o u t ( s i n θ c o s 120 ° ? c o s θ s i n 120 ° ) T_y= \frac {\sqrt3T_s}{U_{dc}}U_{out}(sinθcos120°-cosθsin120°) Ty?=Udc?3 ?Ts??Uout?(sinθcos120°?cosθsin120°)

T y = 3 T s U d c U o u t ( ? 1 2 s i n θ ? 3 2 c o s θ ) T_y= \frac {\sqrt3T_s}{U_{dc}}U_{out}(-\frac12sinθ-\frac{\sqrt3}2cosθ) Ty?=Udc?3 ?Ts??Uout?(?21?sinθ?23 ??cosθ)

T y = ? 3 T s U d c ( 3 2 U α + 1 2 U β ) T_y=-\frac {\sqrt3 T_s}{U_{dc}}( \frac {\sqrt3}2U_α+\frac 1 2U_β ) Ty?=?Udc?3 ?Ts??(23 ??Uα?+21?Uβ?)


2. 解析扇区Ⅲ的 T x T_x Tx?

U o u t c o s ( θ ? 120 ° ) = 2 3 U d c ? T x T s + 2 3 U d c ? T y T s ? c o s 60 ° U_{out}cos(θ-120°) = \frac23U_{dc}*\frac {T_x} {T_s}+\frac23U_{dc}*\frac {T_y} {T_s}*cos60° Uout?cos(θ?120°)=32?Udc??Ts?Tx??+32?Udc??Ts?Ty???cos60°

U o u t c o s ( θ ? 120 ° ) = 2 3 U d c ? T x T s + 2 3 U d c ? T y T s ? 1 2 U_{out}cos(θ-120°) = \frac23U_{dc}*\frac {T_x} {T_s}+\frac23U_{dc}*\frac {T_y} {T_s}*\frac12 Uout?cos(θ?120°)=32?Udc??Ts?Tx??+32?Udc??Ts?Ty???21?

U o u t c o s ( θ ? 120 ° ) = 2 3 U d c ? T x T s + 1 3 U d c ? T y T s U_{out}cos(θ-120°) = \frac23U_{dc}*\frac {T_x} {T_s}+\frac13U_{dc}*\frac {T_y} {T_s} Uout?cos(θ?120°)=32?Udc??Ts?Tx??+31?Udc??Ts?Ty??

U o u t c o s ( θ ? 120 ° ) = 2 3 U d c ? T x T s + 1 3 U d c ? ? 3 T s U d c ( 3 2 U α + 1 2 U β ) T s U_{out}cos(θ-120°) = \frac23U_{dc}*\frac {Tx} {T_s}+\frac13U_{dc}*\frac {-\frac {\sqrt3 T_s}{U_{dc}}( \frac {\sqrt3}2U_α+\frac 1 2U_β )} {T_s} Uout?cos(θ?120°)=32?Udc??Ts?Tx?+31?Udc??Ts??Udc?3 ?Ts??(23 ??Uα?+21?Uβ?)?

U o u t c o s ( θ ? 120 ° ) = 2 3 U d c ? T x T s ? 3 3 ( 3 2 U α + 1 2 U β ) U_{out}cos(θ-120°) = \frac23U_{dc}*\frac {T_x} {T_s} - \frac{ \sqrt3 }3( \frac {\sqrt3}2U_α+\frac 1 2U_β ) Uout?cos(θ?120°)=32?Udc??Ts?Tx???33 ??(23 ??Uα?+21?Uβ?)

T x = U o u t ( c o s θ c o s 120 ° + s i n θ s i n 120 ° ) + 3 3 ( 3 2 U α + 1 2 U β ) 2 3 U d c T s T_x = \frac {U_{out}(cosθcos120°+sinθsin120°) + \frac{ \sqrt3 }3( \frac {\sqrt3}2U_α+\frac 1 2U_β ) } {\frac 23U_{dc}}T_s Tx?=32?Udc?Uout?(cosθcos120°+sinθsin120°)+33 ??(23 ??Uα?+21?Uβ?)?Ts?

T x = ? 1 2 U α + 3 2 U β + 1 2 U α + 3 6 U β 2 3 U d c T s T_x = \frac {-\frac12Uα+\frac{\sqrt3}{2}Uβ + \frac 12U_α+\frac {\sqrt3} 6U_β } {\frac 23U_{dc}}T_s Tx?=32?Udc??21?Uα+23 ??Uβ+21?Uα?+63 ??Uβ??Ts?

T x = U β 2 3 3 2 3 U d c T s T_x = \frac {Uβ\frac{2\sqrt3}{3} } {\frac 23U_{dc}}T_s Tx?=32?Udc?Uβ323 ???Ts?

T x = 3 T s U d c U β T_x = \frac {\sqrt3 T_s}{U_{dc}}Uβ Tx?=Udc?3 ?Ts??Uβ


由于手敲公式占了太多字数空间,超出编辑字数,因此扇区计算分为两篇,扇区4,5,6计算可通过下方链接进入

[嵌入式专栏](FOC - SVPWM扇区计算Part2)

3 . 小结

计算出了SVPWM每个扇区的Tx与Ty就可以进行扇区输出了,下一篇讲解扇区输出调整,谢谢观看。

技术交流QQ群 : 745662457
群内专注 - 问题答疑,技术研究

图片资源本人在网上下载,若有侵权行为,请告知,本人会立刻删除

文章来源:https://blog.csdn.net/Engineer_LU/article/details/135282819
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。