语言模型演变经历的几个阶段
BERT模型本质上是结合了ELMo模型与GPT模型的优势。
2018年Google发布了BERT(来自Transformer的双向自编码器)预训练模型,旨在通过联合左侧和右侧的上下文,从未标记文本中预训练出一个深度双向表示模型。因此,BERT可以通过增加一个额外的输出层来进行微调,就可以达到为广泛的任务创建State-of-the-arts 模型的效果,比如QA、语言推理任务。
当时将预训练模应用于下游任务的策略通常有两种:基于特征的(feature-based)和基于微调(fine-tuning);前者比如ELMo,后者比如OpenAI GPT;
这两种策略在预训练期间具有相同的目标函数,在预训练期间,它们使用单向语言模型来学习一般的语言表示。但当前对预训练方法的限制(尤其是对基于微调的方法)是标准语言模型是单向(unidirectional)的,所以限制了在预训练阶段可选的模型结构体系。
比如GPT是从左到右的,每个token只能关注到前一个token的self-attention layers。这种局限对于句子级任务(sentence-level tasks)来说还不是很打紧,但是对于token-level tasks(比如QA)就很致命,所以结合两个方向的上下文信息至关重要。
第一步:Tokenization, 输入的句子经过分词后,首尾添加[CLS]与[SEP]特殊字符,后转换为数字id
第二步:Embedding, 输入到BERT模型的信息由三部分内容组成:
BERT由Encoder Layer堆叠而成,Encoder Layer的组成与Transformer的Encoder Layer一致:
BERT会针对每一个位置输出大小为hidden size的向量,在下游任务中,会根据任务内容的不同,选取不同的向量放入输出层
例如,在诈骗邮件分类任务中,我们会将表示句子级别信息的[CLS]
token所对应的向量,经过Bert Pooler放入classfier中,得到对spam/not spam分类的预测。
我们一般称[CLS]经过线性层+激活函数tanh的输出为pooler output,用于句子级别的分类/回归任务
例如,在词性标注任务(POS Tagging)中,我们需要获得每一个token所对应的类别,因此需要将[CLS]和[SEP]中有实际意义的token输出,分别输入对应的classifier中。
我们一般称BERT输出的每个位置对应的vector为sequence output
BERT预训练任务有两种:Masked Language Modelling(MLM) 和 Next Sentence Prediction (NSP)。
Masked Language Modelling(MLM) 捕捉词语级别的信息
为了使得预训练任务和推理任务尽可能接近,BERT在随机遮盖的15%的tokens中又进行了进一步的处理:
Next Sentence Prediction (NSP) 捕捉句子级别信息,简单来说是一个针对句子对的分类问题,判断一组句子中,句子B是否为句子A的下一句(IsNext or NotNext)
在下游任务中,我们使用少量的标注数据(labelled data)对预训练Transformer编码器的所有参数进行微调,额外的输出层将从头开始训练。