机器学习之集成学习AdaBoost

发布时间:2024年01月12日

概念

AdaBoost(Adaptive Boosting)是一种迭代的集成学习算法,其主要目标是通过组合多个弱学习器来创建一个强大的模型。以下是AdaBoost算法的主要步骤:

  1. 初始化样本权重: 为每个训练样本分配相等的权重,通常设为 w i = 1 N w_i = \frac{1}{N} w

文章来源:https://blog.csdn.net/u011095039/article/details/135545755
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。