目录
???????批量归一化(Batch Normalization)是一种用于深度神经网络的常用技术,旨在加快模型的训练速度、提高模型的稳定性和泛化能力。
???????在深度神经网络中,反向传播算法用于计算网络参数的梯度,以便通过梯度下降等优化算法来更新参数。损失函数在神经网络的上层计算损失,梯度在反向传播过程中会逐层传递,通过链式法则计算每一层的梯度,就导致上层梯度大而下层梯度小。当网络层数很深时,梯度在传递过程中可能会变得非常小,甚至趋近于零,这就是梯度消失问题。
???????梯度消失问题会导致深层网络的参数难以更新,因为梯度信息无法有效地传播回浅层网络。这会导致浅层网络的参数在训练过程中几乎不会得到更新,从而影响了整个网络的训练效果。
???????批量归一化的解决方案是在训练底层网络的时候避免顶部重新训练。
? ? ? ?进行一个线性变换,学习一个新的和使得数据变化不那么剧烈,对神经网络更友好。
???????因此的均值为,方差为。
???????因此的均值为0,方差为1。
???????因此的均值为,方差为。
样本减去其均值后除以方差的操作被称为标准化或归一化。这种操作常用于统计分析和机器学习中。
???????批量归一化(Batch Normalization)在深度学习中能够加快模型训练速度的原因主要有以下几点:
???????缓解梯度消失问题:在深层神经网络中,梯度消失是一个常见的问题,导致较深层的梯度信息无法有效地传播回浅层网络。批量归一化通过对每一层的输入进行标准化,使得输入数据的均值接近0,方差接近1,从而使得激活函数的输入范围更加适中,避免了输入数据过大或过小,激活函数在其有效范围内具有较大的导数值,从而使得梯度能够更好地通过网络传播。这样,即使在深层网络中,梯度仍然可以有效地反向传播,从而保持参数的更新,缓解梯度消失问题,加速模型的训练过程。
???????加速收敛:批量归一化通过标准化每一层的输入,将数据分布调整为接近标准正态分布,使得网络的参数更容易学习。这有助于加快模型的收敛速度,减少训练的迭代次数,从而加速模型的训练过程。
???????增加学习率:批量归一化使得网络中的各层输入具有相对较小的变化范围,从而增加了模型对学习率的鲁棒性。较大的学习率可以加速模型的收敛,同时避免了因为学习率过大导致的不稳定性。
???????正则化效果:批量归一化本质上对每一层的输入进行了规范化处理,类似于一种正则化的效果。它在一定程度上减少了模型对输入数据的依赖,增强了模型的泛化能力,有助于防止过拟合。
???????总的来说,批量归一化通过标准化每一层的输入数据,缓解梯度消失问题,加快模型的收敛速度,增加学习率和正则化效果,从而有效地加快模型的训练速度。
???????下面,我们从头开始实现一个具有张量的批量规范化层。
import torch
from torch import nn
from d2l import torch as d2l
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum): # X:输入 gamma,beta:可学习参数γ,β moving_mean,moving_var:全局均值和方差,做推理时用 eps:避免除0的东西 momentum:用来更新γ,β的参数
# 通过is_grad_enabled来判断当前模式是训练模式还是预测模式
if not torch.is_grad_enabled():
# 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4) # 等于2的话就是全连接层,等于4的话就是卷积层
if len(X.shape) == 2:
# 使用全连接层的情况,计算特征维上的均值和方差
mean = X.mean(dim=0) # 二维的话第一维是批量大小(行),第二维是特征(列),dim=0表示每一列算出一个均值
var = ((X - mean) ** 2).mean(dim=0)
else:
# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
# 这里我们需要保持X的形状以便后面可以做广播运算
mean = X.mean(dim=(0, 2, 3), keepdim=True)
var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
# 训练模式下,用当前的均值和方差做标准化
X_hat = (X - mean) / torch.sqrt(var + eps)
# 更新移动平均的均值和方差
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta # 缩放和移位
return Y, moving_mean.data, moving_var.data
???????在全连接层中,输入数据的维度通常为两个,分别是:
- 批量大小(Batch Size):表示一次输入的样本数量,即一批数据的大小。通常用于同时处理多个样本,以利用并行计算的优势。
- 特征维度(Feature Dimension):表示每个样本在全连接层中的特征表示。这个维度的大小可以根据任务和网络设计进行调整,通常是通过将输入数据展平(flatten)为一维向量来实现。展平操作将多维的输入数据转换为一维的特征向量,作为全连接层的输入。
???????例如,如果输入数据的维度为[batch_size, num_features],其中batch_size表示批量大小,num_features表示每个样本的特征维度,那么全连接层的两个维度就分别是batch_size和num_features。
???????我们现在可以创建一个正确的`BatchNorm`层。这个层将保持适当的参数:拉伸`gamma`和偏移`beta`,这两个参数将在训练过程中更新。此外,我们的层将保存均值和方差的移动平均值,以便在模型预测期间随后使用。
???????撇开算法细节,注意我们实现层的基础设计模式。通常情况下,我们用一个单独的函数定义其数学原理,比如说`batch_norm`。然后,我们将此功能集成到一个自定义层中,其代码主要处理数据移动到训练设备(如GPU)、分配和初始化任何必需的变量、跟踪移动平均线(此处为均值和方差)等问题。为了方便起见,我们并不担心在这里自动推断输入形状,因此我们需要指定整个特征的数量。不用担心,深度学习框架中的批量规范化API将为我们解决上述问题,我们稍后将展示这一点。
class BatchNorm(nn.Module):
# num_features:完全连接层的输出数量或卷积层的输出通道数。
# num_dims:2表示完全连接层,4表示卷积层
def __init__(self, num_features, num_dims):
super().__init__()
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
# 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
self.gamma = nn.Parameter(torch.ones(shape))
self.beta = nn.Parameter(torch.zeros(shape))
# 非模型参数的变量初始化为0和1
self.moving_mean = torch.zeros(shape)
self.moving_var = torch.ones(shape)
def forward(self, X):
# 如果X不在内存上,将moving_mean和moving_var
# 复制到X所在显存上
if self.moving_mean.device != X.device:
self.moving_mean = self.moving_mean.to(X.device)
self.moving_var = self.moving_var.to(X.device)
# 保存更新过的moving_mean和moving_var
Y, self.moving_mean, self.moving_var = batch_norm(
X, self.gamma, self.beta, self.moving_mean,
self.moving_var, eps=1e-5, momentum=0.9)
return Y
???????在PyTorch中,nn.Parameter是一个特殊的张量,它被用作模型的可学习参数。当我们使用nn.Parameter包装一个张量时,PyTorch会自动将其标记为模型参数,使得在模型的训练过程中可以对其进行自动求导和更新。
???????在这段代码中,self.gamma和self.beta是可学习参数,它们用于缩放(gamma)和偏移(beta)归一化后的数据。因此,我们需要使用nn.Parameter将这两个张量标记为模型参数,以便可以对它们进行自动求导和更新。
???????而self.moving_mean和self.moving_var是批量归一化层中的非模型参数。它们用于保存移动平均的均值和方差,在训练过程中会被更新。但是它们不是模型的可学习参数,因此不需要使用nn.Parameter进行标记。
???????为了更好理解如何应用`BatchNorm`,下面我们将其应用于LeNet模型。批量规范化是在卷积层或全连接层之后、相应的激活函数之前应用的。
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
nn.Linear(84, 10))
???????和以前一样,我们将在Fashion-MNIST数据集上训练网络。这个代码与我们第一次训练LeNet时几乎完全相同,主要区别在于学习率大得多。
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.273, train acc 0.899, test acc 0.807
32293.9 examples/sec on cuda:0
???????让我们来看看从第一个批量规范化层中学到的拉伸参数`gamma`和偏移参数`beta`。
net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))
(tensor([0.4863, 2.8573, 2.3190, 4.3188, 3.8588, 1.7942], device='cuda:0',
grad_fn=<ReshapeAliasBackward0>),
tensor([-0.0124, 1.4839, -1.7753, 2.3564, -3.8801, -2.1589], device='cuda:0',
grad_fn=<ReshapeAliasBackward0>))
???????除了使用我们刚刚定义的`BatchNorm`,我们也可以直接使用深度学习框架中定义的`BatchNorm`。该代码看起来几乎与我们上面的代码相同。
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
nn.Linear(84, 10))
???????下面,我们使用相同超参数来训练模型。通常高级API变体运行速度快得多,因为它的代码已编译为C++或CUDA,而我们的自定义代码由Python实现。
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.267, train acc 0.902, test acc 0.708
50597.3 examples/sec on cuda:0