数字人对话系统 Linly-Talker(已加入Qwen和GeminiPro加强对话+上传任意图片的数字人)

发布时间:2024年01月04日

🔥🔥🔥数字人对话系统 Linly-Talker🔥🔥🔥(已加入Qwen和GeminiPro加强对话+上传任意图片的数字人)

English 简体中文

欢迎大家star我的仓库 https://github.com/Kedreamix/Linly-Talker

我在B站也有更新我的视频,大家也可以看看效果 ?www.bilibili.com/video/BV1rN4y1a76x/

2023.12 更新 📆

用户可以上传任意图片进行对话

2024.01 更新 📆

令人兴奋的消息!我现在已经将强大的GeminiPro和Qwen大模型融入到我们的对话场景中。用户现在可以在对话中上传任何图片,为我们的互动增添了全新的层面。

介绍

Linly-Talker是一个将大型语言模型与视觉模型相结合的智能AI系统,创建了一种全新的人机交互方式。它集成了各种技术,例如Whisper、Linly、微软语音服务和SadTalker会说话的生成系统。该系统部署在Gradio上,允许用户通过提供图像与AI助手进行交谈。用户可以根据自己的喜好进行自由的对话或内容生成。

在这里插入图片描述

创建环境

conda create -n linly python=3.8 
conda activate linly

pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

conda install ffmpeg 

pip install -r requirements_app.txt

ASR - Whisper

借鉴OpenAI的Whisper,具体使用方法参考https://github.com/openai/whisper

TTS - Edge TTS

使用微软语音服务,具体使用方法参考https://github.com/rany2/edge-tts

THG - SadTalker

说话头生成使用SadTalker,参考CVPR 2023,详情见https://sadtalker.github.io

下载SadTalker模型:

bash scripts/download_models.sh  

LLM - Conversation

Linly-AI

Linly来自深圳大学数据工程国家重点实验室,参考https://github.com/CVI-SZU/Linly

下载Linly模型:https://huggingface.co/Linly-AI/Chinese-LLaMA-2-7B-hf

git lfs install
git clone https://huggingface.co/Linly-AI/Chinese-LLaMA-2-7B-hf

或使用API:

# 命令行
curl -X POST -H "Content-Type: application/json" -d '{"question": "北京有什么好玩的地方?"}' http://url:port  

# Python
import requests

url = "http://url:port"
headers = {
  "Content-Type": "application/json"
}

data = {
  "question": "北京有什么好玩的地方?" 
}

response = requests.post(url, headers=headers, json=data)
# response_text = response.content.decode("utf-8")
answer, tag = response.json()
# print(answer)
if tag == 'success':
    response_text =  answer[0]
else:
    print("fail")
print(response_text)

Qwen

来自阿里云的Qwen,查看 https://github.com/QwenLM/Qwen

下载 Qwen 模型: https://huggingface.co/Qwen/Qwen-7B-Chat-Int4

git lfs install
git clone https://huggingface.co/Qwen/Qwen-1_8B-Chat

Gemini-Pro

来自 Google 的 Gemini-Pro,了解更多请访问 https://deepmind.google/technologies/gemini/

请求 API 密钥: https://makersuite.google.com/

模型选择

在 app.py 文件中,轻松选择您需要的模型。

# 取消注释并设置您选择的模型:

# llm = Gemini(model_path='gemini-pro', api_key=None, proxy_url=None) # 不要忘记加入您自己的 Google API 密钥
# llm = Qwen(mode='offline', model_path="Qwen/Qwen-1_8B-Chat")
# 自动下载
# llm = Linly(mode='offline', model_path="Linly-AI/Chinese-LLaMA-2-7B-hf")
# 手动下载到指定路径
llm = Linly(mode='offline', model_path="./Chinese-LLaMA-2-7B-hf")

优化

一些优化:

  • 使用固定的输入人脸图像,提前提取特征,避免每次读取
  • 移除不必要的库,缩短总时间
  • 只保存最终视频输出,不保存中间结果,提高性能
  • 使用OpenCV生成最终视频,比mimwrite更快

Gradio

Gradio是一个Python库,提供了一种简单的方式将机器学习模型作为交互式Web应用程序来部署。

对Linly-Talker而言,使用Gradio有两个主要目的:

  1. 可视化与演示:Gradio为模型提供一个简单的Web GUI,上传图片和文本后可以直观地看到结果。这是展示系统能力的有效方式。

  2. 用户交互:Gradio的GUI可以作为前端,允许用户与Linly-Talker进行交互对话。用户可以上传自己的图片并输入问题,实时获取回答。这提供了更自然的语音交互方式。

具体来说,我们在app.py中创建了一个Gradio的Interface,接收图片和文本输入,调用函数生成回应视频,在GUI中显示出来。这样就实现了浏览器交互而不需要编写复杂的前端。

总之,Gradio为Linly-Talker提供了可视化和用户交互的接口,是展示系统功能和让最终用户使用系统的有效途径。

启动

首先说明一下的文件夹结构如下

Linly-Talker/ 
├── app.py
├── app_img.py
├── utils.py
├── Linly-api.py
├── Linly-example.ipynb
├── README.md
├── README_zh.md
├── request-Linly-api.py
├── requirements_app.txt
├── scripts
│   └── download_models.sh
├──	src
│	└── .....
├── inputs
│   ├── example.png
│   └── first_frame_dir
│       ├── example_landmarks.txt
│       ├── example.mat
│       └── example.png
├── examples
│   ├── driven_audio
│   │   ├── bus_chinese.wav
│   │   ├── ......
│   │   └── RD_Radio40_000.wav
│   ├── ref_video
│   │   ├── WDA_AlexandriaOcasioCortez_000.mp4
│   │   └── WDA_KatieHill_000.mp4
│   └── source_image
│       ├── art_0.png
│       ├── ......
│       └── sad.png
├── checkpoints // SadTalker 权重路径
│   ├── mapping_00109-model.pth.tar
│   ├── mapping_00229-model.pth.tar
│   ├── SadTalker_V0.0.2_256.safetensors
│   └── SadTalker_V0.0.2_512.safetensors
├── gfpgan // GFPGAN 权重路径
│   └── weights
│       ├── alignment_WFLW_4HG.pth
│       └── detection_Resnet50_Final.pth
├── Chinese-LLaMA-2-7B-hf // Linly 权重路径
    ├── config.json
    ├── generation_config.json
    ├── pytorch_model-00001-of-00002.bin
    ├── pytorch_model-00002-of-00002.bin
    ├── pytorch_model.bin.index.json
    ├── README.md
    ├── special_tokens_map.json
    ├── tokenizer_config.json
    └── tokenizer.model

接下来进行启动

python app.py

在这里插入图片描述

可以任意上传图片进行对话

python app_img.py

在这里插入图片描述

参考

文章来源:https://blog.csdn.net/weixin_45508265/article/details/135383033
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。