法线变换矩阵的推导

发布时间:2024年01月07日

背景

在冯氏光照模型中,其中的漫反射项需要我们对法向量和光线做点乘计算。

从顶点着色器中读入的法向量数据处于模型空间,我们需要将法向量转换到世界空间,然后在世界空间中让法向量和光线做运算。这里便有一个问题,如何将法线从当前的模型空间变换到世界空间?

首先,法向量只是一个方向向量,不能表达空间中的特定位置。同时,法向量没有齐次坐标(顶点位置中的w分量)。这意味着,位移不应该影响到法向量。因此,如果我们打算把法向量乘以一个模型矩阵,我们就要从矩阵中移除位移部分,只选用模型矩阵左上角3×3的矩阵(注意,我们也可以把法向量的w分量设置为0,再乘以4×4矩阵;这同样可以移除位移)。对于法向量,我们只希望对它实施缩放和旋转变换。

其次,如果模型矩阵执行了不等比缩放,顶点的改变会导致法向量不再垂直于表面了。因此,我们不能用这样的模型矩阵来变换法向量。下面的图展示了应用了不等比缩放的模型矩阵对法向量的影响:

在这里插入图片描述

当我们应用一个不等比缩放时(注意:等比缩放不会破坏法线,因为法线的方向没被改变,仅仅改变了法线的长度,而这很容易通过标准化来修复),法向量就不会再垂直于对应的表面了,这样光照就会被破坏。

修复这个行为的诀窍是使用一个为法向量专门定制的模型矩阵。这个矩阵称之为法线矩阵(Normal Matrix),它使用了一些线性代数的操作来移除对法向量错误缩放的影响。

推导过程

为了将一个顶点从模型空间转换到世界空间,我们可以乘上一个模型矩阵model,包含物体的移动、旋转、缩放信息。在shader中的代码如下:

FragPos = vec3(model * vec4(aPos, 1.0));

对于一个向量,正如上面的图展示的一样,我们不能简单乘上model矩阵。如果乘上model矩阵,向量就不再和原来的表面切线垂直了。

我们可以定义表面切线为 T = P 2 ? P 1 T = P_2 - P1 T=P2??P1,其中 P 1 , P 2 P_1,P_2 P1?,P2?都是表面上的顶点。当表面前线乘上model矩阵时,我们有:
m o d e l ? T = m o d e l ? P 2 ? m o d e l ? P 1 T ′ = P 2 ′ ? P 1 ′ model * T = model * P_2 - model * P_1 \\ T' = P_2' - P_1' model?T=model?P2??model?P1?T=P2??P1?
变换后的表面切线 T ′ T' T仍然可以表示成表面上顶点的差,因此乘上model矩阵之后,表面切线不会被破坏。

对于表面上的法线 N N N,我们无法从表面上找到两个顶点来表示,但是我们知道表面法线与切线互相垂直,即
N ? T = 0 N \cdot T = 0 N?T=0
我们假设矩阵 G G G就是可以将法线从模型空间转换到世界空间的正确矩阵,并用 M M M来表示模型矩阵model,于是有下式:
N ′ ? T ′ = ( G N ) ? ( M T ) = 0 N' \cdot T' = (GN)\cdot(MT) = 0 N?T=(GN)?(MT)=0
转化成矩阵表示的形式
( G N ) ? ( M T ) = ( G N ) T ? ( M T ) = N T G T M T = 0 (GN)\cdot(MT) = (GN)^T*(MT) = N^TG^TMT = 0 (GN)?(MT)=(GN)T?(MT)=NTGTMT=0
我们知道 N ? T = N T T = 0 N\cdot T = N^TT = 0 N?T=NTT=0,所以如果 G T M = a I G^TM = aI GTM=aI a a a是任意非零常数,我们便有
N ′ ? T ′ = N T G T M T = N T a I T = a N T T = 0 N'\cdot T' = N^TG^TMT = N^TaIT = aN^TT = 0 N?T=NTGTMT=NTaIT=aNTT=0
由于我们不想改变法向量的模长,因此令 a = 1 a = 1 a=1,只要满足 G T M = I G^TM = I GTM=I的条件,我们就可以说 G G G是我们最终需要的矩阵,进一步计算
G T M = I ? G = ( M ? 1 ) T G^TM = I \longleftrightarrow G = (M^{-1})^T GTM=I?G=(M?1)T
最终可得,将法线从模型空间转换到世界空间的矩阵为 ( M ? 1 ) T (M^{-1})^T (M?1)T

补充说明

当模型矩阵只进行了旋转或等比缩放时,我们用这个矩阵来变换法线向量,可以得到正确的结果。

这是因为旋转矩阵和等比缩放矩阵都是正交矩阵,正交矩阵有一个属性:矩阵的转置等于矩阵的逆。

因此
M ? 1 = M T → G = ( M ? 1 ) T = M M^{-1} = M^T \rightarrow G = (M^{-1})^T = M M?1=MTG=(M?1)T=M

参考

https://learnopengl-cn.github.io/02%20Lighting/02%20Basic%20Lighting/

http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/the-normal-matrix/

文章来源:https://blog.csdn.net/weixin_43347688/article/details/135440822
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。