YOLOv5改进 | 损失函数篇 | InnerIoU、InnerSIoU、InnerWIoU、FocusIoU等损失函数

发布时间:2024年01月08日

 一、本文介绍

本文给大家带来的是YOLOv5最新改进,为大家带来最近新提出的InnerIoU的内容同时用Inner的思想结合SIoU、WIoU、GIoU、DIoU、EIOU、CIoU等损失函数形成 InnerIoU、InnerSIoU、InnerWIoU等新版本损失函数,同时还结合了Focus和AIpha思想形成的新的损失函数,其中Inner的主要思想是:引入了不同尺度的辅助边界框来计算损失,(该方法在处理非常小目标的检测任务时表现出良好的性能(但是在其它的尺度检测时也要比普通的损失要好)。文章会详细探讨这些损失函数如何提高YOLOv5在各种检测任务中的性能,包括提升精度、加快收敛速度和增强模型对复杂场景的适应性。

专栏目录:

文章来源:https://blog.csdn.net/java1314777/article/details/135277564
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。