map|二分查找|离线查询|LeetCode:2736最大和查询

发布时间:2023年12月17日

本文涉及的基础知识点

二分查找算法合集

题目

给你两个长度为 n 、下标从 0 开始的整数数组 nums1 和 nums2 ,另给你一个下标从 1 开始的二维数组 queries ,其中 queries[i] = [xi, yi] 。
对于第 i 个查询,在所有满足 nums1[j] >= xi 且 nums2[j] >= yi 的下标 j (0 <= j < n) 中,找出 nums1[j] + nums2[j] 的 最大值 ,如果不存在满足条件的 j 则返回 -1 。
返回数组 answer ,其中 answer[i] 是第 i 个查询的答案。
示例 1:
输入:nums1 = [4,3,1,2], nums2 = [2,4,9,5], queries = [[4,1],[1,3],[2,5]]
输出:[6,10,7]
解释:
对于第 1 个查询:xi = 4 且 yi = 1 ,可以选择下标 j = 0 ,此时 nums1[j] >= 4 且 nums2[j] >= 1 。nums1[j] + nums2[j] 等于 6 ,可以证明 6 是可以获得的最大值。
对于第 2 个查询:xi = 1 且 yi = 3 ,可以选择下标 j = 2 ,此时 nums1[j] >= 1 且 nums2[j] >= 3 。nums1[j] + nums2[j] 等于 10 ,可以证明 10 是可以获得的最大值。
对于第 3 个查询:xi = 2 且 yi = 5 ,可以选择下标 j = 3 ,此时 nums1[j] >= 2 且 nums2[j] >= 5 。nums1[j] + nums2[j] 等于 7 ,可以证明 7 是可以获得的最大值。
因此,我们返回 [6,10,7] 。
示例 2:
输入:nums1 = [3,2,5], nums2 = [2,3,4], queries = [[4,4],[3,2],[1,1]]
输出:[9,9,9]
解释:对于这个示例,我们可以选择下标 j = 2 ,该下标可以满足每个查询的限制。
示例 3:
输入:nums1 = [2,1], nums2 = [2,3], queries = [[3,3]]
输出:[-1]
解释:示例中的查询 xi = 3 且 yi = 3 。对于每个下标 j ,都只满足 nums1[j] < xi 或者 nums2[j] < yi 。因此,不存在答案。
参数范围
nums1.length == nums2.length
n == nums1.length
1 <= n <= 105
1 <= nums1[i], nums2[i] <= 109
1 <= queries.length <= 105
queries[i].length == 2
xi == queries[i][1]
yi == queries[i][2]
1 <= xi, yi <= 109

离线查询、值降序map

时间复杂度😮(nlogn)。
按xi的降序对queries的索引排序。

变量解析

maxHeap记录所有的nums1[j]和nums2[j],nums1[j]大的在堆顶
ySum记录所有nums[j]大于当前xi的nums2[j]和nums1[j]+nums2[j],键升序,值降序。如果 nums2[j1] <= nums2[j2]且nums1[j1]+nums2[j1] <=nums1[j2]+nums2[j2]。则j1被j2淘汰了。
it[it,ySum.m_map.end()) 中的元素,全部大于xi和yi,由于值是降序,所有第一个值就是答案。

代码

核心代码

template<class _Kty,class _Ty,bool bValueDdes,bool bOutSmallKey> 
class COrderValueMap 
{
public:
	void Add (_Kty key, _Ty value)
	{
		if (bOutSmallKey)
		{
			if (bValueDdes)
			{
				AddOutSmall(key, value, std::less_equal<_Ty>(), std::greater_equal<_Ty>());
			}
			else
			{
				AddOutSmall(key, value, std::greater_equal<_Ty>(), std::less_equal<_Ty>());
			}
		}
		else 
		{
			if (bValueDdes)
			{
				AddNotOutSmall(key, value, std::greater_equal<_Ty>(), std::less_equal<_Ty>());
			}
			else
			{
				AddNotOutSmall(key, value, std::less_equal<_Ty>(), std::greater_equal<_Ty>());
			}
		}
	};
	std::map<_Kty, _Ty> m_map;
protected:
	template<class _Pr1, class _Pr2>
	void AddOutSmall(_Kty key, _Ty value, _Pr1 pr1, _Pr2 pr2)
	{
		auto it = m_map.lower_bound(key);
		if ((m_map.end() != it) && pr1(it->second, value))
		{
			return;//被旧值淘汰
		}
		auto ij = it;
		while (it != m_map.begin())
		{
			--it;
			if (pr2(it->second, value))
			{
				it = m_map.erase(it);
			}
		}
		m_map[key] = value;
	}
	template<class _Pr1, class _Pr2>
	void AddNotOutSmall(_Kty key, _Ty value, _Pr1 pr1,_Pr2 pr2 )
	{
		auto it = m_map.upper_bound(key);
		if ((m_map.begin() != it) && pr1(std::prev(it)->second, value))
		{
			return;//被淘汰
		}
		auto ij = it;
		for (; (m_map.end() != ij) && pr2(ij->second, value); ++ij);
		m_map.erase(it, ij);
		m_map[key] = value;
	};
	
};
class Solution {
public:
	vector<int> maximumSumQueries(vector<int>& nums1, vector<int>& nums2, vector<vector<int>>& queries) {
		vector<int> indexs(queries.size());
		iota(indexs.begin(), indexs.end(), 0);
		sort(indexs.begin(), indexs.end(), [&](const int i1, const int i2) {return queries[i1][0] > queries[i2][0]; });
		priority_queue<pair<int, int>> maxHeap;
		for (int i = 0; i < nums1.size(); i++)
		{
			maxHeap.emplace(nums1[i], nums2[i]);
		}
		COrderValueMap<int, int, false, true> ySum;
		vector<int> vRet(queries.size(), -1);
		for (const auto i : indexs)
		{
			while (maxHeap.size() && (maxHeap.top().first >= queries[i][0]))
			{
				ySum.Add(maxHeap.top().second, maxHeap.top().first + maxHeap.top().second);
				maxHeap.pop();
			}
			auto it = ySum.m_map.lower_bound(queries[i][1]);
			if (ySum.m_map.end() != it)
			{
				vRet[i] = it->second;
			}
		}
		return vRet;
	}
};

测试用例

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		assert(v1[i] == v2[i]);
	}
}

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

int main()
{
	vector<int> nums1, nums2;
	vector<vector<int>> queries;
	{
		Solution slu;		
		nums1 = { 4,3,1,2 }, nums2 = { 2,4,9,5 }, queries = { {4,1},{1,3},{2,5} };
		auto res = slu.maximumSumQueries(nums1,nums2,queries);
		Assert(vector<int>{6, 10, 7}, res);
	}
	{
		Solution slu;
		nums1 = { 3,2,5 }, nums2 = { 2,3,4 }, queries = { {4,4},{3,2},{1,1} };
		auto res = slu.maximumSumQueries(nums1, nums2, queries);
		Assert(vector<int>{9, 9, 9}, res);
	}
	{
		Solution slu;
		nums1 = { 2,1 }, nums2 = { 2,3 }, queries = { {3,3} };
		auto res = slu.maximumSumQueries(nums1, nums2, queries);
		Assert(vector<int>{-1}, res);
	}
}

2023年6月代码

class CMaxLineTreeMap
{
public:
CMaxLineTreeMap(int iArrSize) :m_iArrSize(iArrSize)
{
}
//iIndex 从0开始
void Modify(int iIndex, int iValue)
{
Modify(1, 1, m_iArrSize, iIndex + 1, iValue);
}
//iNeedQueryLeft iNeedQueryRight 从0开始
int Query(const int iNeedQueryLeft, const int iNeedQueryRight)
{
return Query(1, 1, m_iArrSize, iNeedQueryLeft + 1, iNeedQueryRight + 1);
}
protected:
int Query(const int iTreeNodeIndex, const int iRecordLeft, const int iRecordRight, const int iNeedQueryLeft, const int iNeedQueryRight)
{
if ((iNeedQueryLeft <= iRecordLeft) && (iNeedQueryRight >= iRecordRight))
{
return m_mData[iTreeNodeIndex];
}
const int iMid = (iRecordLeft + iRecordRight) / 2;
int iRet = 0;
if (iNeedQueryLeft <= iMid)
{
iRet = Query(iTreeNodeIndex * 2, iRecordLeft, iMid, iNeedQueryLeft, iNeedQueryRight);
}
if (iNeedQueryRight > iMid)
{
iRet = max(iRet, Query(iTreeNodeIndex * 2 + 1, iMid + 1, iRecordRight, iNeedQueryLeft, iNeedQueryRight));
}
return iRet;
}
void Modify(int iTreeNodeIndex, int iLeft, int iRight, int iIndex, int iValue)
{
if (iLeft == iRight)
{
m_mData[iTreeNodeIndex] = max(m_mData[iTreeNodeIndex],iValue);
return;
}
const int iMid = (iLeft + iRight) / 2;
if (iIndex <= iMid)
{
Modify(iTreeNodeIndex * 2, iLeft, iMid, iIndex, iValue);
}
else
{
Modify(iTreeNodeIndex * 2 + 1, iMid + 1, iRight, iIndex, iValue);
}
m_mData[iTreeNodeIndex] = max(m_mData[iTreeNodeIndex * 2], m_mData[iTreeNodeIndex * 2 + 1]);
}
const int m_iArrSize;
std::unordered_map<int,int> m_mData;
};

class Solution {
public:
vector maximumSumQueries(vector& nums1, vector& nums2, vector<vector>& queries) {
m_c = queries.size();
vector indexs;
for (int i = 0; i < m_c; i++)
{
indexs.emplace_back(i);
}
std::sort(indexs.begin(), indexs.end(), [&queries](const int&i1, const int& i2)
{
return queries[i1][1] > queries[i2][1];
});
std::multimap<int, std::pair<int, int>> m_Num2ToNum1Sum;
for (int i = 0; i < nums2.size(); i++)
{
m_Num2ToNum1Sum.emplace(nums2[i], std::make_pair(nums1[i], nums1[i] + nums2[i]));
}
vector vRet(m_c);
auto it = m_Num2ToNum1Sum.rbegin();
const int iMaxValue = 1000 * 1000 * 1000;
CMaxLineTreeMap lineTree(iMaxValue+1);
for (int index = 0; index < indexs.size(); index++)
{
const int i = indexs[index];
const auto& que = queries[i];
while ((it != m_Num2ToNum1Sum.rend()) && (it->first >= que[1]))
{
lineTree.Modify(it->second.first, it->second.second);
it++;
}
vRet[i] = lineTree.Query(que[0], iMaxValue);
if (0 == vRet[i])
{
vRet[i] = -1;
}
}
return vRet;
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

文章来源:https://blog.csdn.net/he_zhidan/article/details/134992262
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。