深度学习实战67-基于Stable-diffusion的图像生成应用模型的搭建,在Kaggle平台的搭建部署,解决本地没有算力资源问题

发布时间:2023年12月18日

大家好,我是微学AI,今天给大家介绍一下深度学习实战67-基于Stable-diffusion的图像生成应用模型的搭建,在Kaggle平台的搭建部署,解决本地没有算力资源问题。稳定扩散模型(Stable Diffusion Model)是一种用于图像增强和去噪的计算机视觉算法。它通过对输入图像进行扩散过程来改善图像质量,使其更加清晰、平滑,并去除噪声。该模型的核心思想是在图像上应用偏微分方程,通过不断迭代更新像素值,以达到图像平滑和去噪的效果。具体来说,稳定扩散模型基于热传导方程,其中像素的变化速度取决于其与周围像素之间的差异。
在这里插入图片描述

一、Stable Diffusion的数学原理

稳定扩散模型的数学原理可以用以下偏微分方程表示:

? u ? t = ?

文章来源:https://blog.csdn.net/weixin_42878111/article/details/135023566
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。