目录
本文将介绍k8s的监控平台搭建,搭建一套完善的k8s监控平台可以帮助我们随时观察生产服务器的运行资源使用情况,例如:CPU、内存、磁盘、网络IO等,除了资源可视化之外,还可以设置监控预警功能,提高生产环境可用性和稳定性,提高排除故障的效率。
接下来,我们基于prometheus + grafana 的方式搭建一套k8s监控平台。
Prometheus官方地址:Overview | Prometheus。
Prometheus是一个开源系统监控和警报工具包,最初由SoundCloud构建。自2012年Prometheus项目启动以来,许多公司和组织都采用了它,该项目拥有非常活跃的开发人员和用户社区。它现在是一个独立的开源项目,独立于任何公司进行维护。为了强调这一点,并澄清项目的治理结构,Prometheus于2016年加入了云原生计算基金会,成为继Kubernetes之后的第二个托管项目。
Prometheus主要有以下一些特点:
Prometheus架构图:
Prometheus组件说明:
创建资源清单文件:vim node-exporter.yaml
## 下面就是yaml文件的具体配置内容
---
apiVersion: apps/v1
kind: DaemonSet # DaemonSet表示每个节点都会运行node-exporter
metadata:
name: node-exporter
namespace: kube-system # 命名空间
labels:
k8s-app: node-exporter
spec:
selector:
matchLabels:
k8s-app: node-exporter
template:
metadata:
labels:
k8s-app: node-exporter
spec:
containers:
- image: prom/node-exporter
name: node-exporter
ports:
- containerPort: 9100
protocol: TCP
name: http
---
apiVersion: v1
kind: Service
metadata:
labels:
k8s-app: node-exporter
name: node-exporter
namespace: kube-system
spec:
ports:
- name: http
port: 9100
nodePort: 31672
protocol: TCP
type: NodePort # 将node-exporter以NodePort方式暴露出来,端口是31672
selector:
k8s-app: node-exporter
创建并查看pod、service:
$ kubectl create -f node-exporter.yaml
daemonset.apps/node-exporter created
service/node-exporter created
$ kubectl get daemonset.apps/node-exporter -n kube-system
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
node-exporter 2 2 2 2 2 <none> 36s
$ kubectl get service/node-exporter -n kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
node-exporter NodePort 10.99.26.203 <none> 9100:31672/TCP 48s
创建rbac角色控制资源清单文件:vim rbac.yaml
##下面就是yaml文件的具体配置内容
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus
rules:
- apiGroups: [""]
resources:
- nodes
- nodes/proxy
- services
- endpoints
- pods
verbs: ["get", "list", "watch"]
- apiGroups:
- extensions
resources:
- ingresses
verbs: ["get", "list", "watch"]
- nonResourceURLs: ["/metrics"]
verbs: ["get"]
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: prometheus
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: prometheus
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus
subjects:
- kind: ServiceAccount
name: prometheus
namespace: kube-system
创建集群角色、用户、角色绑定关系:
$ kubectl create -f rbac.yaml
clusterrole.rbac.authorization.k8s.io/prometheus created
serviceaccount/prometheus created
clusterrolebinding.rbac.authorization.k8s.io/prometheus created
创建configmap资源清单: vim configmap.yaml
##下面就是yaml文件的具体配置内容
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus-config
namespace: kube-system
data:
prometheus.yml: |
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'kubernetes-apiservers'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-nodes'
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics
- job_name: 'kubernetes-cadvisor'
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
- job_name: 'kubernetes-services'
kubernetes_sd_configs:
- role: service
metrics_path: /probe
params:
module: [http_2xx]
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe]
action: keep
regex: true
- source_labels: [__address__]
target_label: __param_target
- target_label: __address__
replacement: blackbox-exporter.example.com:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
target_label: kubernetes_name
- job_name: 'kubernetes-ingresses'
kubernetes_sd_configs:
- role: ingress
relabel_configs:
- source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe]
action: keep
regex: true
- source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path]
regex: (.+);(.+);(.+)
replacement: ${1}://${2}${3}
target_label: __param_target
- target_label: __address__
replacement: blackbox-exporter.example.com:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_ingress_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_ingress_name]
target_label: kubernetes_name
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
创建config:
$ kubectl create -f configmap.yaml
configmap/prometheus-config created
$ kubectl get cm prometheus-config -n kube-system
NAME DATA AGE
prometheus-config 1 33s
创建prometheus的Pod资源清单文件:vim prometheus-deploy.yaml
## 下面就是yaml文件的具体配置内容
---
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
name: prometheus-deployment
name: prometheus
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
template:
metadata:
labels:
app: prometheus
spec:
containers:
- image: prom/prometheus:v2.0.0
name: prometheus
command:
- "/bin/prometheus"
args:
- "--config.file=/etc/prometheus/prometheus.yml"
- "--storage.tsdb.path=/prometheus"
- "--storage.tsdb.retention=24h"
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: "/prometheus"
name: data
- mountPath: "/etc/prometheus"
name: config-volume
resources:
requests:
cpu: 100m
memory: 100Mi
limits:
cpu: 500m
memory: 2500Mi
serviceAccountName: prometheus
volumes:
- name: data
emptyDir: {}
- name: config-volume
configMap:
name: prometheus-config
创建prometheus pod:
$ kubectl create -f prometheus-deploy.yaml
deployment.apps/prometheus created
$ kubectl get pod -A | grep prometheu
kube-system prometheus-ddf89874b-d8mbd 1/1 Running 0 76s
暴露prometheus,准备资源清单:vim prometheus-service.yaml
## 下面就是yaml文件的具体配置内容
---
kind: Service
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus
namespace: kube-system
spec:
type: NodePort
ports:
- port: 9090
targetPort: 9090
nodePort: 30003
selector:
app: prometheus
创建service:
$ kubectl create -f prometheus-service.yaml
service/prometheus created
$ kubectl get svc -n kube-system | grep prometheus
prometheus NodePort 10.96.216.242 <none> 9090:30003/TCP 32s
$ kubectl get pod,svc -n kube-system | grep prometheus
pod/prometheus-ddf89874b-d8mbd 1/1 Running 0 4m20s
service/prometheus NodePort 10.96.216.242 <none> 9090:30003/TCP 96s 18s
$ kubectl get DaemonSet -n kube-system | grep node-exporter
node-exporter 2 2 2 2 2 <none>
可以看到,成功启动了prometheus的pod和service,prometheus对外暴露的端口是30003,且安装在192.168.1.33这台机器上。在浏览器通过[ip:port]访问http://192.168.1.33:30003,如下图:
说明我们的Pormetheus已经搭建成功,接下来我们部署Grafana。
Grafana官方文档地址:Documentation | Grafana Labs。
Grafana主要的一些特点:
在k8s集群监控平台中,Grafana的作用就是从Prometheus中读取数据,生成报表的形式进行数据可视化的功能。
创建grafana的pod资源清单:vim grafana-deploy.yaml?
## 下面就是yaml文件的具体配置内容
apiVersion: apps/v1
kind: Deployment
metadata:
name: grafana-core
namespace: kube-system
labels:
app: grafana
component: core
spec:
replicas: 1
selector:
matchLabels:
app: grafana
component: core
template:
metadata:
labels:
app: grafana
component: core
spec:
containers:
- image: grafana/grafana:4.2.0
name: grafana-core
imagePullPolicy: IfNotPresent
# env:
resources:
# keep request = limit to keep this container in guaranteed class
limits:
cpu: 100m
memory: 100Mi
requests:
cpu: 100m
memory: 100Mi
env:
# The following env variables set up basic auth twith the default admin user and admin password.
- name: GF_AUTH_BASIC_ENABLED
value: "true"
- name: GF_AUTH_ANONYMOUS_ENABLED
value: "false"
# - name: GF_AUTH_ANONYMOUS_ORG_ROLE
# value: Admin
# does not really work, because of template variables in exported dashboards:
# - name: GF_DASHBOARDS_JSON_ENABLED
# value: "true"
readinessProbe:
httpGet:
path: /login
port: 3000
# initialDelaySeconds: 30
# timeoutSeconds: 1
volumeMounts:
- name: grafana-persistent-storage
mountPath: /var
volumes:
- name: grafana-persistent-storage
emptyDir: {}
?创建grafana的Pod:
$ kubectl create -f grafana-deploy.yaml
deployment.apps/grafana-core created
$ kubectl get pod -n kube-system | grep grafana
grafana-core-7b7ccc7bcf-8lmhq 1/1 Running 0 2m29s
创建资源清单文件:vim grafana-service.yaml
## 下面就是yaml文件的具体配置内容
apiVersion: v1
kind: Service
metadata:
name: grafana
namespace: kube-system
labels:
app: grafana
component: core
spec:
type: NodePort
ports:
- port: 3000
selector:
app: grafana
component: core
创建grafana Service暴露服务:
$ kubectl create -f grafana-service.yaml
service/grafana created
创建Ingress资源清单:vim grafana-ingress.yaml
## 下面就是yaml文件的具体配置内容
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: grafana
namespace: kube-system
spec:
rules:
- host: k8s.grafana
http:
paths:
- path: /
backend:
serviceName: grafana
servicePort: 3000
创建ingress:
$ kubectl create -f grafana-ingress.yaml
Warning: extensions/v1beta1 Ingress is deprecated in v1.14+, unavailable in v1.22+; use networking.k8s.io/v1 Ingress
ingress.extensions/grafana created
$ kubectl get pod,svc -n kube-system | grep grafana
pod/grafana-core-85587c9c49-zqhhh 1/1 Running 0 76s
service/grafana NodePort 10.105.169.65 <none> 3000:30155/TCP 55s
$ kubectl get ing -n kube-system | grep grafana
grafana <none> k8s.grafana 80 3h28m
可以看到,grafana对外暴露的端口是30155,且安装在192.168.1.33这台机器上,所以我们通过浏览器访问:http://192.168.1.33:30155/,默认用户名/密码为:admin/admin:
接下来我们需要添加数据源 Prometheus,注意,绑定Prometheus时,需要使用prometheus这个service的CLUSTER-IP和代理转发到容器的端口进行连接,即10.98.46.224:9090,如下图:
数据源添加完成后,我们导入内置报表模板:
输入Prometheus网络模板ID,这里选择ID为315的模板进行统计:
选择前面定义的数据源名称,本例中我们是mydatasource,并点击导入模板进行数据可视化:
至此,通过Prometheus结合Grafana实现了一个简单的k8s集群监控平台,当然,这里只是一个简单的演示,更多高级功能在需要用到的时候,再查看官网文档。