分布式技术之协调与同步
发布时间: 2023年12月18日
分布式互斥
对于同一共享资源,一个程序正在使用的时候也不希望被其他程序打扰。这,就要求同一时刻只能有一个程序能够访问这种资源。在分布式系统里,这种排他性的资源访问方式,叫作分布式互斥(Distributed Mutual Exclusion) ,而这种被互斥访问的共享资源就叫作临界资源(Critical Resource) 。
集中式算法
引入一个协调者程序,得到一个分布式互斥算法。每个程序在需要访问临界资源时,先给协调者发送一个请求。如果当前没有程序使用这个资源,协调者直接授权请求程序访问;否则,按照先来后到的顺序为请求程序“排一个号”。如果有程序使用完资源,则通知协调者,协调者从“排号”的队列里取出排在最前面的请求,并给它发送授权消息。拿到授权消息的程序,可以直接去访问临界资源。这个互斥算法,就是我们所说的集中式算法 ,也可以叫做中央服务器算法。之所以这么称呼,是因为协调者代表着集中程序或中央服务器。
集中式算法的示意图如下所示:
集中式算法的优点在于直观、简单、信息交互量少、易于实现,并且所有程序只需和协调者通信,程序之间无需通信。但是,这个算法的问题也出在了协调者身上。
一方面,协调者会成为系统的性能瓶颈。想象一下,如果有 100 个程序要访问临界资源,那么协调者要处理 100*3=300 条消息。也就是说,协调者处理的消息数量会随着需要访问临界资源的程序数量线性增加。 另一方面,容易引发单点故障问题。协调者故障,会导致所有的程序均无法访问临界资源,导致整个系统不可用。 因此,在使用集中式算法的时候,一定要选择性能好、可靠性高的服务器来运行协调者。
集中式算法具有简单、易于实现的特点,但可用性、性能易受协调者影响。在可靠性和性能有一定保障的情况下,比如中央服务器计算能力强、性能高、故障率低,或者中央服务器进行了主备备份,主故障后备可以立马升为主,且数据可恢复的情况下,集中式算法可以适用于比较广泛的应用场景。
分布式算法
当一个程序要访问临界资源时,先向系统中的其他程序发送一条请求消息,在接收到所有程序返回的同意消息后,才可以访问临界资源。其中,请求消息需要包含所请求的资源、请求者的 ID,以及发起请求的时间。这,就是民主协商法。在分布式领域中,我们称之为分布式算法 ,或者使用组播和逻辑时钟的算法。
例子
如图所示,程序 1、2、3 需要访问共享资源 A。在时间戳为 8 的时刻,程序 1 想要使用资源 A,于是向程序 2 和 3 发起使用资源 A 的申请,希望得到它们的同意。在时间戳为 12 的时刻,程序 3 想要使用资源 A,于是向程序 1 和 2 发起访问资源 A 的请求。 如图所示,此时程序 2 暂时不访问资源 A,因此同意了程序 1 和 3 的资源访问请求。对于程序 3 来说,由于程序 1 提出请求的时间更早,因此同意程序 1 先使用资源,并等待程序 1 返回同意消息。 如图所示,程序 1 接收到其他所有程序的同意消息之后,开始使用资源 A。当程序 1 使用完资源 A 后,释放使用权限,向请求队列中需要使用资源 A 的程序 3 发送同意使用资源的消息,并将程序 3 从请求队列中删除。此时,程序 3 收到了其他所有程序的同意消息,获得了使用资源 A 的权限,开始使用临界资源 A 的旅程。 从上述流程可以看出,一个程序完成一次临界资源的访问,需要进行如下的信息交互:
向其他 n-1 个程序发送访问临界资源的请求,总共需要 n-1 次消息交互; 需要接收到其他 n-1 个程序回复的同意消息,方可访问资源,总共需要 n-1 次消息交互。 可以看出,一个程序要成功访问临界资源,至少需要 2*(n-1) 次消息交互。假设,现在系统中的 n 个程序都要访问临界资源,则会同时产生 2n(n-1) 条消息。总结来说,在大型系统中使用分布式算法,消息数量会随着需要访问临界资源的程序数量呈指数级增加,容易导致高昂的“沟通成本”。
分布式算法根据“先到先得”以及“投票全票通过”的机制,让每个程序按时间顺序公平地访问资源,简单粗暴、易于实现。但,这个算法可用性很低,主要包括两个方面的原因:
当系统内需要访问临界资源的程序增多时,容易产生“信令风暴”,也就是程序收到的请求完全超过了自己的处理能力,而导致自己正常的业务无法开展。 一旦某一程序发生故障,无法发送同意消息,那么其他程序均处在等待回复的状态中,使得整个系统处于停滞状态,导致整个系统不可用。所以,相对于集中式算法的协调者故障,分布式算法的可用性更低。 因此,分布式算法适合节点数目少且变动不频繁的系统,且由于每个程序均需通信交互,因此适合 P2P 结构的系统 。比如,运行在局域网中的分布式文件系统,具有 P2P 结构的系统等。Hadoop 是我们非常熟悉的分布式系统,其中的分布式文件系统 HDFS 的文件修改就是一个典型的应用分布式算法的场景。
令牌环算法
所有程序构成一个环结构,令牌按照顺时针(或逆时针)方向在程序之间传递,收到令牌的程序有权访问临界资源,访问完成后将令牌传送到下一个程序;若该程序不需要访问临界资源,则直接把令牌传送给下一个程序。在分布式领域,这个算法叫作令牌环算法 ,也可以叫作基于环的算法。 因为在使用临界资源前,不需要像分布式算法那样挨个征求其他程序的意见了,所以相对而言,在令牌环算法里单个程序具有更高的通信效率。同时,在一个周期内,每个程序都能访问到临界资源,因此令牌环算法的公平性很好。但是,不管环中的程序是否想要访问资源,都需要接收并传递令牌,所以也会带来一些无效通信。假设系统中有 100 个程序,那么程序 1 访问完资源后,即使其它 99 个程序不需要访问,也必须要等令牌在其他 99 个程序传递完后,才能重新访问资源,这就降低了系统的实时性。综上,令牌环算法非常适合通信模式为令牌环方式的分布式系统 ,例如移动自组织网络系统。一个典型的应用场景就是无人机通信。 令牌环算法是一种更加公平的算法,通常会与通信令牌结合,从而取得很好的效果。特别是当系统支持广播或组播通信模式时,该算法更加高效、可行。 对于集中式和分布式算法都存在的单点故障问题,在令牌环中,若某一个程序出现故障,则直接将令牌传递给故障程序的下一个程序,从而很好地解决单点故障问题,提高系统的健壮性,带来更好的可用性。但,这就要求每个程序都要记住环中的参与者信息,这样才能知道在跳过一个参与者后令牌应该传递给谁。
你知道的越多,你不知道的越多。
文章来源:https://blog.csdn.net/qq_40722827/article/details/135020074
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:chenni525@qq.com进行投诉反馈,一经查实,立即删除!