A split of an integer array is good if:
The array is split into three non-empty contiguous subarrays - named left, mid, right respectively from left to right.
The sum of the elements in left is less than or equal to the sum of the elements in mid, and the sum of the elements in mid is less than or equal to the sum of the elements in right.
Given nums, an array of non-negative integers, return the number of good ways to split nums. As the number may be too large, return it modulo 10^9 + 7
.
Example 1:
Input: nums = [1,1,1]
Output: 1
Explanation: The only good way to split nums is [1] [1] [1].
Example 2:
Input: nums = [1,2,2,2,5,0]
Output: 3
Explanation: There are three good ways of splitting nums:
[1] [2] [2,2,5,0]
[1] [2,2] [2,5,0]
[1,2] [2,2] [5,0]
Example 3:
Input: nums = [3,2,1]
Output: 0
Explanation: There is no good way to split nums.
Constraints:
3 <= nums.length <= 10^5
0 <= nums[i] <= 10^4
Get a pre sum array first, then let’s say the nums
is splitted into 3 parts, nums[0:i], nums[i:j], nums[j:]
. To satisfy the requirements, we need:
pre_sum[i] <= pre_sum[j] - pre_sum[i] <= pre_sum[-1] - pre_sum[j]
In other words, for every i
, we have this range for j
:
pre_sum[j] >= 2 * pre_sum[i]
pre_sum[j] * 2 <= pre_sum[-1] - pre_sum[i]
Since pre_sum
is a sorted array, we could use binary search to find j
.
Time complexity:
o
(
n
log
?
n
)
o(n\log n)
o(nlogn)
Space complexity:
o
(
n
)
o(n)
o(n)
class Solution:
def waysToSplit(self, nums: List[int]) -> int:
def find_smallest(nums: list, target: int) -> int:
"""
Find smallest index that nums[i] >= target
"""
left, right = 0, len(nums) - 1
while left < right:
mid = (left + right) >> 1
if nums[mid] < target:
left = mid + 1
else:
right = mid
return (left + right) >> 1
def find_largest(nums: list, target: int) -> int:
"""
Find largest index that nums[i] <= target
"""
left, right = 0, len(nums) - 1
while left < right:
mid = (left + right + 1) >> 1
if nums[mid] > target:
right = mid - 1
else:
left = mid
return (left + right) >> 1
pre_sum = []
cur_sum = 0
for each_num in nums:
cur_sum += each_num
pre_sum.append(cur_sum)
res = 0
mod_num = 1000000007
for i in range(len(pre_sum) - 2):
j_min = find_smallest(pre_sum, pre_sum[i] * 2)
j_max = find_largest(pre_sum, (pre_sum[-1] + pre_sum[i]) / 2)
if pre_sum[j_min] >= 2 * pre_sum[i] and pre_sum[j_max] * 2 <= pre_sum[-1] + pre_sum[i]:
res += max(0, min(len(pre_sum) - 2, j_max) - max(i + 1, j_min) + 1)
res %= mod_num
return res % mod_num