这是Python机器学习原创文章,我的第183篇原创文章。
? ? ? ?对于表格数据,一套完整的机器学习建模流程如下:
背景知识1:机器学习中的学习器
【Python机器学习系列】一文搞懂机器学习中的转换器和估计器(附案例)
背景知识2:机器学习中的管道机制
简介:
????????转换器用于数据的预处理和特征工程,它们无状态且只学习转换规则。而估计器用于模型的训练和预测,它们有状态且学习训练数据中的模式和规律。转换器和估计器在机器学习中扮演不同的角色,但它们通常可以结合在一起构建一个完整的机器学习流程。
????????机器学习的管道(Pipeline)机制通过将多个转换器和估计器按顺序连接在一起,可以构建一个完整的数据处理和模型训练流程。在管道机制中,可以使用Pipeline类来组织和连接不同的转换器和估计器。Pipeline类提供了一种简单的方式来定义和管理机器学习任务的流程。
好处:
????????1.管道机制是按照封装顺序依次执行的一种机制,在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。
????????2.可以结合grid search对参数进行选择。
import pandas as pd
from sklearn.pipeline import Pipeline #管道机制
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split #分训练和测试集
#导入“流水线”各个模块(标准化,降维,分类)
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)
target = 'target'
features = df.columns.drop(target)
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=0)
????????steps为Pipeline类最关键的参数,sklearn规定它是一个[( ),( )]类型,列表里面是一个个元组,分别为名字和工序,从左到右是流水线上的先后顺序。Pipleline中最后一个之外的所有estimators都必须是变换器(transformers),最后一个estimator可以是任意类型(transformer,classifier,regresser),如果最后一个estimator是个分类器,则整个pipeline就可以作为分类器使用,如果最后一个estimator是个聚类器,则整个pipeline就可以作为聚类器使用。如果你不想为每一个步骤提供用户指定的名称,这种情况下,就可以用make_pipeline函数创建管道,它可以为我们创建管道并根据每个步骤所属的类为其自动命名。
# pipe=Pipeline(steps=[('standardScaler',StandardScaler()), ('pca', PCA()), ('svc',SVC())])
pipe=make_pipeline(StandardScaler(),PCA(),SVC())
pipe.predict(X_test) #预测结果
print('Test accuracy: %.3f' % pipe.score(X_test, y_test))#输出精度
输出:
????????在机器学习中,超参数是模型的配置参数,需要在训练之前设置,并且不能通过模型的学习过程来自动调整。超参数的选择对于模型的性能和泛化能力非常重要,因此需要通过实验来确定最佳的超参数组合。GridSearchCV是scikit-learn库中的一个类,用于进行网格搜索(Grid Search)和交叉验证(Cross-Validation)来选择模型的最佳超参数。使用GridSearchCV时,需要提供一个估计器(Estimator)对象、超参数的候选值列表和评估指标(如准确率、均方误差等)。GridSearchCV将对所有超参数组合进行交叉验证,并返回具有最佳性能的超参数组合及其对应的模型。
pipeline=Pipeline([('scaler',StandardScaler()),('pca',PCA()),('svm',SVC())])
param_grid={'svm__C':[0.001,0.01,0.1,1,10,100],'svm__gamma':[0.001,0.01,0.1,1,10,100]}# 定义网格搜索参数,用<estimator>__<parameter>形式设置参数
grid=GridSearchCV(pipeline,param_grid,cv=5, scoring='accuracy')# 网格搜索模型实例化
grid.fit(X_train,y_train)
grid.predict(X_test)
print('Test accuracy: %.3f' % grid.score(X_test, y_test))#输出精度
输出:
????????本文简单介绍了机器学习管道流水线机制的使用方法,事实上特征处理过程也可以加入管道,我们还可以自定义转化器加入管道中,可以对不同的特征处理划分不同的管道,这些用法我后期出文章再细说。
本期内容就到这里,我们下期再见!需要数据集和源码的小伙伴关注底部公众号添加作者微信!
作者简介:
读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。