欢迎大家关注我的微信公众号:
传送门:JVM对象创建与内存分配机制剖析?
传送门:垃圾收集器ParNew&CMS与底层三色标记算法详解?
? ? ? ? 我们在上一篇文章中详细讲了ParNew和CMS垃圾收集器,以及底层三色标记算法。本文讲解另外两个垃圾收集器G1和ZGC。?
目录
?
????????G1 (Garbage-First)是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器。以极高概率满足GC停顿时间要求的同时,还具备高吞吐量性能特征。
????????G1将Java堆划分为多个大小相等的独立区域(Region),JVM目标是不超过2048个Region(JVM源码里TARGET_REGION_NUMBER 定义),实际可以超过该值,但是不推荐。一般Region大小等于堆大小除以2048,比如堆大小为4096M,则Region大小为2M,当然也可以用参数"-XX:G1HeapRegionSize"手动指定Region大小,但是推荐默认的计算方式。
????????G1保留了年轻代和老年代的概念,但不再是物理隔阂了,它们都是(可以不连续)Region的集合。默认年轻代对堆内存的占比是5%,如果堆大小为4096M,那么年轻代占据200MB左右的内存,对应大概是100个Region,可以通过“-XX:G1NewSizePercent”设置新生代初始占比,在系统运行中,JVM会不停的给年轻代增加更多的Region,但是最多新生代的占比不会超过60%,可以通过“-XX:G1MaxNewSizePercent”调整。年轻代中的Eden和Survivor对应的region也跟之前一样,默认8:1:1,假设年轻代现在有1000个region,eden区对应800个,s0对应100个,s1对应100个。
????????一个Region可能之前是年轻代,如果Region进行了垃圾回收,之后可能又会变成老年代,也就是说Region的区域功能可能会动态变化。
????????G1垃圾收集器对于对象什么时候会转移到老年代跟之前讲过的原则一样,唯一不同的是对大对象的处理,G1有专门分配大对象的Region叫Humongous区,而不是让大对象直接进入老年代的Region中。在G1中,大对象的判定规则就是一个大对象超过了一个Region大小的50%,比如按照上面算的,每个Region是2M,只要一个大对象超过了1M,就会被放入Humongous中,而且一个大对象如果太大,可能会横跨多个Region来存放。
????????Humongous区专门存放短期巨型对象,不用直接进老年代,可以节约老年代的空间,避免因为老年代空间不够的GC开销。
????????Full GC的时候除了收集年轻代和老年代之外,也会将Humongous区一并回收。
G1收集器一次GC(主要值Mixed GC)的运作过程大致分为以下几个步骤:
????????G1收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的Region(这也就是它的名字Garbage-First的由来),比如一个Region花200ms能回收10M垃圾,另外一个Region花50ms能回收20M垃圾,在回收时间有限情况下,G1当然会优先选择后面这个Region回收。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限时间内可以尽可能高的收集效率。?
被视为JDK1.7以上版本Java虚拟机的一个重要进化特征。它具备以下特点:
????????毫无疑问, 可以由用户指定期望的停顿时间是G1收集器很强大的一个功能, 设置不同的期望停顿时间, 可使得G1在不同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡。 不过, 这里设置的“期望值”必须是符合实际的, 不能异想天开, 毕竟G1是要冻结用户线程来复制对象的, 这个停顿时间再怎么低也得有个限度。 它默认的停顿目标为两百毫秒, 一般来说, 回收阶段占到几十到一百甚至接近两百毫秒都很正常, 但如果我们把停顿时间调得非常低, 譬如设置为二十毫秒, 很可能出现的结果就是由于停顿目标时间太短, 导致每次选出来的回收集只占堆内存很小的一部分, 收集器收集的速度逐渐跟不上分配器分配的速度, 导致垃圾慢慢堆积。 很可能一开始收集器还能从空闲的堆内存中获得一些喘息的时间, 但应用运行时间一长就不行了, 最终占满堆引发Full GC反而降低性能, 所以通常把期望停顿时间设置为一两百毫秒或者两三百毫秒会是比较合理的。
YoungGC
????????YoungGC并不是说现有的Eden区放满了就会马上触发,G1会计算下现在Eden区回收大概要多久时间,如果回收时间远远小于参数 -XX:MaxGCPauseMills 设定的值,那么增加年轻代的region,继续给新对象存放,不会马上做Young GC,直到下一次Eden区放满,G1计算回收时间接近参数 -XX:MaxGCPauseMills 设定的值,那么就会触发Young GC。
MixedGC
????????不是FullGC,老年代的堆占有率达到参数(-XX:InitiatingHeapOccupancyPercent)设定的值则触发,回收所有的Young和部分Old(根据期望的GC停顿时间确定old区垃圾收集的优先顺序)以及大对象区,正常情况G1的垃圾收集是先做MixedGC,主要使用复制算法,需要把各个region中存活的对象拷贝到别的region里去,拷贝过程中如果发现没有足够的空region能够承载拷贝对象就会触发一次Full GC。
Full GC
????????停止系统程序,然后采用单线程进行标记、清理和压缩整理,好空闲出来一批Region来供下一次MixedGC使用,这个过程是非常耗时的。(Shenandoah优化成多线程收集了)。
????????Kafka类似的支撑高并发消息系统大家肯定不陌生,对于kafka来说,每秒处理几万甚至几十万消息时很正常的,一般来说部署kafka需要用大内存机器(比如64G),也就是说可以给年轻代分配个三四十G的内存用来支撑高并发处理,这里就涉及到一个问题了,我们以前常说的对于eden区的young gc是很快的,这种情况下它的执行还会很快吗?很显然,不可能,因为内存太大,处理还是要花不少时间的,假设三四十G内存回收可能最快也要几秒钟,按kafka这个并发量放满三四十G的eden区可能也就一两分钟吧,那么意味着整个系统每运行一两分钟就会因为young gc卡顿几秒钟没法处理新消息,显然是不行的。那么对于这种情况如何优化了,我们可以使用G1收集器,设置 -XX:MaxGCPauseMills 为50ms,假设50ms能够回收三到四个G内存,然后50ms的卡顿其实完全能够接受,用户几乎无感知,那么整个系统就可以在卡顿几乎无感知的情况下一边处理业务一边收集垃圾。
????????G1天生就适合这种大内存机器的JVM运行,可以比较完美的解决大内存垃圾回收时间过长的问题。
????????假设参数 -XX:MaxGCPauseMills 设置的值很大,导致系统运行很久才会做年轻代gc,年轻代可能都占用了堆内存的60%了,此时才触发年轻代gc。那么存活下来的对象可能就会很多,此时就会导致Survivor区域放不下那么多的对象,就会进入老年代中。或者是你年轻代gc过后,存活下来的对象过多,导致进入Survivor区域后触发了动态年龄判定规则,达到了Survivor区域的50%,也会快速导致一些对象进入老年代中。
????????所以这里核心还是在于调节 -XX:MaxGCPauseMills 这个参数的值,在保证他的年轻代gc别太频繁的同时,还得考虑每次gc过后的存活对象有多少,避免存活对象太多快速进入老年代,频繁触发mixed gc。
参考文章:https://wiki.openjdk.java.net/display/zgc/Main
http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf
????????ZGC是一款JDK 11中新加入的具有实验性质的低延迟垃圾收集器,ZGC可以说源自于是Azul System公司开发的C4(Concurrent Continuously Compacting Collector) 收集器。
如下图所示,ZGC的目标主要有4个:?
????????另外,Oracle官方提到了它最大的优点是:它的停顿时间不会随着堆的增大而增长!也就是说,几十G堆的停顿时间是10ms以下,几百G甚至上T堆的停顿时间也是10ms以下。
????????我们知道以前的垃圾回收器之所以分代,是因为源于“「大部分对象朝生夕死」”的假设,事实上大部分系统的对象分配行为也确实符合这个假设。那么为什么ZGC就不分代呢?因为分代实现起来麻烦,作者就先实现出一个比较简单可用的单代版本,后续会优化。
????????ZGC收集器是一款基于Region内存布局的, 暂时不设分代的, 使用了读屏障、 颜色指针等技术来实现可并发的标记-整理算法的, 以低延迟为首要目标的一款垃圾收集器。
ZGC的Region可以具有如图所示的大、 中、 小三类容量:
????????NUMA对应的有UMA,UMA即Uniform Memory Access Architecture,NUMA就是Non Uniform Memory Access Architecture。UMA表示内存只有一块,所有CPU都去访问这一块内存,那么就会存在竞争问题(争夺内存总线访问权),有竞争就会有锁,有锁效率就会受到影响,而且CPU核心数越多,竞争就越激烈。NUMA的话每个CPU对应有一块内存,且这块内存在主板上离这个CPU是最近的,每个CPU优先访问这块内存,那效率自然就提高了:
????????服务器的NUMA架构在中大型系统上一直非常盛行,也是高性能的解决方案,尤其在系统延迟方面表现都很优秀。ZGC是能自动感知NUMA架构并充分利用NUMA架构特性的。
ZGC的运作过程大致可划分为以下四个大的阶段:
ZGC的颜色指针因为“自愈”(Self-Healing)能力,所以只有第一次访问旧对象会变慢, 一旦重分配集中某个Region的存活对象都复制完毕后, 这个Region就可以立即释放用于新对象的分配,但是转发表还得留着不能释放掉, 因为可能还有访问在使用这个转发表。
????????Colored Pointers,即颜色指针,如下图所示,ZGC的核心设计之一。以前的垃圾回收器的GC信息都保存在对象头中,而ZGC的GC信息保存在指针中。
每个对象有一个64位指针,这64位被分为:
为什么有2个mark标记?
????????每一个GC周期开始时,会交换使用的标记位,使上次GC周期中修正的已标记状态失效,所有引用都变成未标记。
????????GC周期1:使用mark0, 则周期结束所有引用mark标记都会成为01。
????????GC周期2:使用mark1, 则期待的mark标记10,所有引用都能被重新标记。
????????通过对配置ZGC后对象指针分析我们可知,对象指针必须是64位,那么ZGC就无法支持32位操作系统,同样的也就无法支持压缩指针了(CompressedOops,压缩指针也是32位)。
颜色指针的三大优势:
????????之前的GC都是采用Write Barrier,这次ZGC采用了完全不同的方案读屏障,这个是ZGC一个非常重要的特性。在标记和移动对象的阶段,每次「从堆里对象的引用类型中读取一个指针」的时候,都需要加上一个Load Barriers。
????????那么我们该如何理解它呢?看下面的代码,第一行代码我们尝试读取堆中的一个对象引用obj.fieldA并赋给引用o(fieldA也是一个对象时才会加上读屏障)。如果这时候对象在GC时被移动了,接下来JVM就会加上一个读屏障,这个屏障会把读出的指针更新到对象的新地址上,并且把堆里的这个指针“修正”到原本的字段里。这样就算GC把对象移动了,读屏障也会发现并修正指针,于是应用代码就永远都会持有更新后的有效指针,而且不需要STW。
????????那么,JVM是如何判断对象被移动过呢?就是利用上面提到的颜色指针,如果指针是Bad Color,那么程序还不能往下执行,需要「slow path」,修正指针;如果指针是Good Color,那么正常往下执行即可:
????????? 这个动作是不是非常像JDK并发中用到的CAS自旋?读取的值发现已经失效了,需要重新读取。而ZGC这里是之前持有的指针由于GC后失效了,需要通过读屏障修正指针。??后面3行代码都不需要加读屏障:Object p = o这行代码并没有从堆中读取数据;o.doSomething()也没有从堆中读取数据;obj.fieldB不是对象引用,而是原子类型。
????????正是因为Load Barriers的存在,所以会导致配置ZGC的应用的吞吐量会变低。官方的测试数据是需要多出额外4%的开销:
????????那么,判断对象是Bad Color还是Good Color的依据是什么呢?就是根据上一段提到的Colored Pointers的4个颜色位。当加上读屏障时,根据对象指针中这4位的信息,就能知道当前对象是Bad/Good Color了。
????????PS:既然低42位指针可以支持4T内存,那么能否通过预约更多位给对象地址来达到支持更大内存的目的呢?答案肯定是不可以。因为目前主板地址总线最宽只有48bit,4位是颜色位,就只剩44位了,所以受限于目前的硬件,ZGC最大只能支持16T的内存,JDK13就把最大支持堆内存从4T扩大到了16T。
????????ZGC最大的问题是浮动垃圾。ZGC的停顿时间是在10ms以下,但是ZGC的执行时间还是远远大于这个时间的。假如ZGC全过程需要执行10分钟,在这个期间由于对象分配速率很高,将创建大量的新对象,这些对象很难进入当次GC,所以只能在下次GC的时候进行回收,这些只能等到下次GC才能回收的对象就是浮动垃圾。
????????ZGC没有分代概念,每次都需要进行全堆扫描,导致一些“朝生夕死”的对象没能及时的被回收。
解决方案
????????目前唯一的办法是增大堆的容量,使得程序得到更多的喘息时间,但是这个也是一个治标不治本的方案。如果需要从根本上解决这个问题,还是需要引入分代收集,让新生对象都在一个专门的区域中创建,然后专门针对这个区域进行更频繁、更快的收集。
????????启用ZGC比较简单,设置JVM参数即可:-XX:+UnlockExperimentalVMOptions 「-XX:+UseZGC」。调优也并不难,因为ZGC调优参数并不多,远不像CMS那么复杂。它和G1一样,可以调优的参数都比较少,大部分工作JVM能很好的自动完成。下图所示是ZGC可以调优的参数:?
ZGC目前有4种机制触发GC:
下图有连线的可以搭配使用
JDK 1.8默认使用 Parallel(年轻代和老年代都是)
JDK 1.9默认使用 G1
????????安全点就是指代码中一些特定的位置,当线程运行到这些位置时它的状态是确定的,这样JVM就可以安全的进行一些操作,比如GC等,所以GC不是想什么时候做就立即触发的,是需要等待所有线程运行到安全点后才能触发。
这些特定的安全点位置主要有以下几种:
????????大体实现思想是当垃圾收集需要中断线程的时候, 不直接对线程操作, 仅仅简单地设置一个标志位, 各个线程执行过程时会不停地主动去轮询这个标志, 一旦发现中断标志为真时就自己在最近的安全点上主动中断挂起。 轮询标志的地方和安全点是重合的。
安全区域又是什么?
????????Safe Point 是对正在执行的线程设定的。如果一个线程处于 Sleep 或中断状态,它就不能响应 JVM 的中断请求,再运行到 Safe Point 上。因此 JVM 引入了 Safe Region。
????????Safe Region 是指在一段代码片段中,引用关系不会发生变化。在这个区域内的任意地方开始 GC 都是安全的。
?
?
?
?