给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明:叶子节点是指没有子节点的节点。
示例 1:
输入:root = [3,9,20,null,null,15,7] 输出:2
示例 2:
输入:root = [2,null,3,null,4,null,5,null,6] 输出:5
提示:
[0, 10^5]
?内-1000 <= Node.val <= 1000
1、递归/深度优先遍历(Recursion,Depth-First Traversal)
2、迭代/广度优先遍历(Iterator,Breadth-First Traversal)
法一:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int minDepth(TreeNode root) {
// Recursion,Depth-First Traversal
// Time: O(n) n 节点数
// Space: O(h) h 高度
if (root == null) return 0;
int d1 = minDepth(root.left);
int d2 = minDepth(root.right);
// 左子树和右子树都为空,
// 左子树或右子树有一个为空,
// 左子树和右子树都不为空
return root.left == null || root.right == null ? d1 + d2 + 1 : Math.min(d1, d2) + 1;
}
}
法二:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int minDepth(TreeNode root) {
// Iterator, Breadth-First Traversal
// Time: O(n) n 节点数
// Space: O(n) 每一层最大的节点数,最好n,最坏1
if (root == null) return 0;
Deque<TreeNode> queue = new ArrayDeque<>();
queue.addLast(root);
int depth = 1;
while (!queue.isEmpty()) {
int size = queue.size();
while (size-- > 0) {
TreeNode node = queue.removeFirst();
if (node.left == null && node.right == null) {
return depth;
}
if (node.left != null) {
queue.addLast(node.left);
}
if (node.right != null) {
queue.addLast(node.right);
}
}
depth++;
}
return depth;
}
}
?