YOLOv8改进 | 主干篇 | 12月份最新成果TransNeXt特征提取网络(全网首发)

发布时间:2024年01月09日

一、本文介绍

本文给大家带来的改进机制是TransNeXt特征提取网络,其发表于2023年的12月份是一个最新最前沿的网络模型,将其应用在我们的特征提取网络来提取特征,同时本文给大家解决其自带的一个报错,通过结合聚合的像素聚焦注意力和卷积GLU,模拟生物视觉系统,特别是对于中心凹的视觉感知。这种方法使得每个像素都能实现全局感知,并强化了模型的信息混合和自然视觉感知能力。TransNeXt在各种视觉任务中,包括图像分类、目标检测和语义分割,都显示出优异的性能(该模型的训练时间很长这是需要大家注意的)。

欢迎大家订阅我的专栏一起学习YOLO! 

专栏目录:

文章来源:https://blog.csdn.net/java1314777/article/details/135416852
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。