from data_provider.data_factory import data_provider ? ?#数据提供模块
from data_provider.m4 import M4Meta ? ?#M4数据集的元数据
from exp.exp_basic import Exp_Basic ? ?#实验基类
from utils.tools import EarlyStopping, adjust_learning_rate, visual ?#工具函数
from utils.losses import mape_loss, mase_loss, smape_loss ? #自定义损失函数
from utils.m4_summary import M4Summary ? #M4数据集的汇总统计
import torch
import torch.nn as nn
from torch import optim
import os
import time
import warnings
import numpy as np
import pandas
warnings.filterwarnings('ignore') ? #忽略警告信息
#短期预测类
class Exp_Short_Term_Forecast(Exp_Basic):
? ? #构造函数
? ? def __init__(self, args):
? ? ? ? super(Exp_Short_Term_Forecast, self).__init__(args)
? ? #创建模型
? ? def _build_model(self):
? ? ? ? if self.args.data == 'm4':
? ? ? ? ? ? self.args.pred_len = M4Meta.horizons_map[self.args.seasonal_patterns] ?# Up to M4 config
? ? ? ? ? ? self.args.seq_len = 2 * self.args.pred_len ?# input_len = 2*pred_len
? ? ? ? ? ? self.args.label_len = self.args.pred_len
? ? ? ? ? ? self.args.frequency_map = M4Meta.frequency_map[self.args.seasonal_patterns]
? ? ? ? model = self.model_dict[self.args.model].Model(self.args).float()
? ? ? ? #多gpu且gpu可用
? ? ? ? if self.args.use_multi_gpu and self.args.use_gpu:
? ? ? ? ? ? model = nn.DataParallel(model, device_ids=self.args.device_ids)
? ? ? ? return model
? ? #从data_provider函数获取数据集合和数据加载器
? ? def _get_data(self, flag):
? ? ? ? data_set, data_loader = data_provider(self.args, flag)
? ? ? ? return data_set, data_loader
? ? #选择优化器,该函数使用adam优化器,从传入的参数self 添加self.args.learning_rate学习率
? ? def _select_optimizer(self):
? ? ? ? model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
? ? ? ? return model_optim
? ? #选择损失函数,MSELoss(均方误差损失)
? ? def _select_criterion(self, loss_name='MSE'):
? ? ? ? if loss_name == 'MSE':
? ? ? ? ? ? return nn.MSELoss()
? ? ? ? elif loss_name == 'MAPE':
? ? ? ? ? ? return mape_loss()
? ? ? ? elif loss_name == 'MASE':
? ? ? ? ? ? return mase_loss()
? ? ? ? elif loss_name == 'SMAPE':
? ? ? ? ? ? return smape_loss()
#训练方法
? ? def train(self, setting):
? ? ? ? #获取数据
? ? ? ? train_data, train_loader = self._get_data(flag='train')
? ? ? ? vali_data, vali_loader = self._get_data(flag='val')
? ? ? ? #创建模型存储文件
? ? ? ? path = os.path.join(self.args.checkpoints, setting)
? ? ? ? if not os.path.exists(path):
? ? ? ? ? ? os.makedirs(path)
? ? ? ? #获取时间戳
? ? ? ? time_now = time.time()
? ? ? ? #训练步长
? ? ? ? train_steps = len(train_loader)
? ? ? ? #早起停止函数,避免过拟合 patience 容忍升高次数
? ? ? ? early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)
? ? ? ? #选择优化器
? ? ? ? model_optim = self._select_optimizer()
? ? ? ? #选择损失函数,这里选择的是MSELoss(均方误差损失)
? ? ? ? criterion = self._select_criterion(self.args.loss)
? ? ? ? mse = nn.MSELoss()
? ? ? ? #根据训练次数循环
? ? ? ? for epoch in range(self.args.train_epochs):
? ? ? ? ? ? iter_count = 0
? ? ? ? ? ? train_loss = []
? ? ? ? ? ? #设置为训练模式
? ? ? ? ? ? self.model.train()
? ? ? ? ? ? #训练开始时间
? ? ? ? ? ? epoch_time = time.time()
? ? ? ? ? ? #从训练数据集中加载每个样本数据
? ? ? ? ? ? for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader):
? ? ? ? ? ? ? ? iter_count += 1
? ? ? ? ? ? ? ? #模型参数梯度值选择为0
? ? ? ? ? ? ? ? model_optim.zero_grad()
? ? ? ? ? ? ? ? #将转化为浮点型的数据加载到cpu或gpu
? ? ? ? ? ? ? ? batch_x = batch_x.float().to(self.device)
? ? ? ? ? ? ? ? batch_y = batch_y.float().to(self.device)
? ? ? ? ? ? ? ? batch_y_mark = batch_y_mark.float().to(self.device)
? ? ? ? ? ? ? ? # decoder input
? ? ? ? ? ? ? ? #输出一个形状与输入一致的全零张量,并转化为浮点型格式
? ? ? ? ? ? ? ? dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
? ? ? ? ? ? ? ? #在给定维度对输入的张量序列进行连续操作,并加载到cpu或者gpu
? ? ? ? ? ? ? ? dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
? ? ? ? ? ? ? ??
? ? ? ? ? ? ? ? outputs = self.model(batch_x, None, dec_inp, None)
? ? ? ? ? ? ? ? f_dim = -1 if self.args.features == 'MS' else 0
? ? ? ? ? ? ? ? outputs = outputs[:, -self.args.pred_len:, f_dim:]
? ? ? ? ? ? ? ? batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
? ? ? ? ? ? ? ? batch_y_mark = batch_y_mark[:, -self.args.pred_len:, f_dim:].to(self.device)
? ? ? ? ? ? ? ? #通过训练值、真实值计算损失函数
? ? ? ? ? ? ? ? loss_value = criterion(batch_x, self.args.frequency_map, outputs, batch_y, batch_y_mark)
? ? ? ? ? ? ? ? loss_sharpness = mse((outputs[:, 1:, :] - outputs[:, :-1, :]), (batch_y[:, 1:, :] - batch_y[:, :-1, :]))
? ? ? ? ? ? ? ? loss = loss_value ?# + loss_sharpness * 1e-5
? ? ? ? ? ? ? ? #将loss里的高精度值添加在train_loss列表
? ? ? ? ? ? ? ? train_loss.append(loss.item())
? ? ? ? ? ? ? ? if (i + 1) % 100 == 0:
? ? ? ? ? ? ? ? ? ? print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
? ? ? ? ? ? ? ? ? ? speed = (time.time() - time_now) / iter_count
? ? ? ? ? ? ? ? ? ? left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i)
? ? ? ? ? ? ? ? ? ? print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
? ? ? ? ? ? ? ? ? ? iter_count = 0
? ? ? ? ? ? ? ? ? ? time_now = time.time()
? ? ? ? ? ? ? ? #计算当前梯度,反向传播
? ? ? ? ? ? ? ? loss.backward()
? ? ? ? ? ? ? ? model_optim.step()
? ? ? ? ? ? #训练所花费时间
? ? ? ? ? ? print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
? ? ? ? ? ? #计算total_loss列表均值
? ? ? ? ? ? train_loss = np.average(train_loss)
? ? ? ? ? ? #验证方法,通过计算模型验证的误差来评估模型性能,即向前传播时不根据学习率计算梯度
? ? ? ? ? ? vali_loss = self.vali(train_loader, vali_loader, criterion)
? ? ? ? ? ? test_loss = vali_loss
? ? ? ? ? ? print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format(
? ? ? ? ? ? ? ? epoch + 1, train_steps, train_loss, vali_loss, test_loss))
? ? ? ? ? ? early_stopping(vali_loss, self.model, path)
? ? ? ? ? ? if early_stopping.early_stop:
? ? ? ? ? ? ? ? print("Early stopping")
? ? ? ? ? ? ? ? break
? ? ? ? ? ? adjust_learning_rate(model_optim, epoch + 1, self.args)
? ? ? ? #加载训练模型
? ? ? ? best_model_path = path + '/' + 'checkpoint.pth'
? ? ? ? self.model.load_state_dict(torch.load(best_model_path))
? ? ? ? return self.model
? ? #验证方法,通过计算模型验证的误差来评估模型性能,即向前传播时不根据学习率计算梯度
? ? def vali(self, train_loader, vali_loader, criterion):
? ? ? ? x, _ = train_loader.dataset.last_insample_window()
? ? ? ? y = vali_loader.dataset.timeseries
? ? ? ? x = torch.tensor(x, dtype=torch.float32).to(self.device)
? ? ? ? x = x.unsqueeze(-1)
? ? ? ? #设置评估模式
? ? ? ? self.model.eval()
? ? ? ? #开启上下文管理器,关闭梯度计算,节省内存和计算资源
? ? ? ? with torch.no_grad():
? ? ? ? ? ? # decoder input
? ? ? ? ? ? #获取输入x的形状
? ? ? ? ? ? B, _, C = x.shape
? ? ? ? ? ? #初始化一个全零的解码器输入
? ? ? ? ? ? dec_inp = torch.zeros((B, self.args.pred_len, C)).float().to(self.device)
? ? ? ? ? ? #将解码器的输入拼接到x上
? ? ? ? ? ? dec_inp = torch.cat([x[:, -self.args.label_len:, :], dec_inp], dim=1).float()
? ? ? ? ? ? # encoder - decoder
? ? ? ? ? ? #初始化输出张量
? ? ? ? ? ? outputs = torch.zeros((B, self.args.pred_len, C)).float() ?# .to(self.device)
? ? ? ? ? ? #创建一个指示每个样本批次开始的索引列表
? ? ? ? ? ? id_list = np.arange(0, B, 500) ?# validation set size
? ? ? ? ? ? id_list = np.append(id_list, B)
? ? ? ? ? ? #为每个批次的数据执行模型预测
? ? ? ? ? ? for i in range(len(id_list) - 1):
? ? ? ? ? ? ? ? outputs[id_list[i]:id_list[i + 1], :, :] = self.model(x[id_list[i]:id_list[i + 1]], None,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? dec_inp[id_list[i]:id_list[i + 1]],
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? None).detach().cpu()
? ? ? ? ? ? #根据特征选择输出结果
? ? ? ? ? ? f_dim = -1 if self.args.features == 'MS' else 0
? ? ? ? ? ? outputs = outputs[:, -self.args.pred_len:, f_dim:]
? ? ? ? ? ? pred = outputs
? ? ? ? ? ? #将输出从gpu转移到cpu,并转换成numpy数组
? ? ? ? ? ? true = torch.from_numpy(np.array(y))
? ? ? ? ? ? #创建一个指定shape全部为1的张量
? ? ? ? ? ? batch_y_mark = torch.ones(true.shape)
? ? ? ? ? ? #计算损失函数
? ? ? ? ? ? loss = criterion(x.detach().cpu()[:, :, 0], self.args.frequency_map, pred[:, :, 0], true, batch_y_mark)
? ? ? ? self.model.train()
? ? ? ? return loss
? ? #定义测试函数,setting 路径,test标志是否加载模型,0表示不加载
? ? def test(self, setting, test=0):
? ? ? ? _, train_loader = self._get_data(flag='train')
? ? ? ? _, test_loader = self._get_data(flag='test')
? ? ? ? x, _ = train_loader.dataset.last_insample_window()
? ? ? ? y = test_loader.dataset.timeseries
? ? ? ? x = torch.tensor(x, dtype=torch.float32).to(self.device)
? ? ? ? x = x.unsqueeze(-1)
? ? ? ? #若是test参数为真,打印loading model
? ? ? ? if test:
? ? ? ? ? ? print('loading model')
? ? ? ? ? ? self.model.load_state_dict(torch.load(os.path.join('./checkpoints/' + setting, 'checkpoint.pth')))
? ? ? ? #检测是否已经创建文件路径,未存在路径则创建该文件
? ? ? ? folder_path = './test_results/' + setting + '/'
? ? ? ? if not os.path.exists(folder_path):
? ? ? ? ? ? os.makedirs(folder_path)
? ? ? ? #设置评估模型
? ? ? ? self.model.eval()
? ? ? ? #开启上下文管理器,关闭梯度计算,节省内存和计算资源
? ? ? ? with torch.no_grad():
? ? ? ? ? ? #获取输入x的形状
? ? ? ? ? ? B, _, C = x.shape
? ? ? ? ? ? #初始化一个全零的解码器输入
? ? ? ? ? ? dec_inp = torch.zeros((B, self.args.pred_len, C)).float().to(self.device)
? ? ? ? ? ? #将解码器的输入拼接到x上
? ? ? ? ? ? dec_inp = torch.cat([x[:, -self.args.label_len:, :], dec_inp], dim=1).float()
? ? ? ? ? ? # encoder - decoder
? ? ? ? ? ? #初始化输出张量
? ? ? ? ? ? outputs = torch.zeros((B, self.args.pred_len, C)).float().to(self.device)
? ? ? ? ? ? #创建一个指示每个样本批次开始的索引列表
? ? ? ? ? ? id_list = np.arange(0, B, 1)
? ? ? ? ? ? id_list = np.append(id_list, B)
? ? ? ? ? ? #为每个批次的数据执行模型预测
? ? ? ? ? ? for i in range(len(id_list) - 1):
? ? ? ? ? ? ? ? outputs[id_list[i]:id_list[i + 1], :, :] = self.model(x[id_list[i]:id_list[i + 1]], None,
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? dec_inp[id_list[i]:id_list[i + 1]], None)
? ? ? ? ? ? ? ? if id_list[i] % 1000 == 0:
? ? ? ? ? ? ? ? ? ? print(id_list[i])
? ? ? ? ? ? #根据特征选择输出结果
? ? ? ? ? ? f_dim = -1 if self.args.features == 'MS' else 0
? ? ? ? ? ? outputs = outputs[:, -self.args.pred_len:, f_dim:]
? ? ? ? ? ? #将输出从gpu转移到cpu,并转换成numpy数组
? ? ? ? ? ? outputs = outputs.detach().cpu().numpy()
? ? ? ? ? ? #可视化预测值和实际值
? ? ? ? ? ? preds = outputs
? ? ? ? ? ? trues = y
? ? ? ? ? ? x = x.detach().cpu().numpy()
? ? ? ? ? ? #对结果进行可视化
? ? ? ? ? ? for i in range(0, preds.shape[0], preds.shape[0] // 10):
? ? ? ? ? ? ? ? gt = np.concatenate((x[i, :, 0], trues[i]), axis=0)
? ? ? ? ? ? ? ? pd = np.concatenate((x[i, :, 0], preds[i, :, 0]), axis=0)
? ? ? ? ? ? ? ? visual(gt, pd, os.path.join(folder_path, str(i) + '.pdf'))
? ? ? ? print('test shape:', preds.shape)
? ? ? ? # result save
? ? ? ? #结果存储
? ? ? ? folder_path = './m4_results/' + self.args.model + '/'
? ? ? ? if not os.path.exists(folder_path):
? ? ? ? ? ? os.makedirs(folder_path)
? ? ? ? #将预测结果保存到cvs中
? ? ? ? forecasts_df = pandas.DataFrame(preds[:, :, 0], columns=[f'V{i + 1}' for i in range(self.args.pred_len)])
? ? ? ? forecasts_df.index = test_loader.dataset.ids[:preds.shape[0]]
? ? ? ? forecasts_df.index.name = 'id'
? ? ? ? forecasts_df.set_index(forecasts_df.columns[0], inplace=True)
? ? ? ? forecasts_df.to_csv(folder_path + self.args.seasonal_patterns + '_forecast.csv')
? ? ? ? #打印当前使用的模型名称
? ? ? ? print(self.args.model)
? ? ? ? #检查路径是否包含所有所需的预测文件
? ? ? ? file_path = './m4_results/' + self.args.model + '/'
? ? ? ? if 'Weekly_forecast.csv' in os.listdir(file_path) \
? ? ? ? ? ? ? ? and 'Monthly_forecast.csv' in os.listdir(file_path) \
? ? ? ? ? ? ? ? and 'Yearly_forecast.csv' in os.listdir(file_path) \
? ? ? ? ? ? ? ? and 'Daily_forecast.csv' in os.listdir(file_path) \
? ? ? ? ? ? ? ? and 'Hourly_forecast.csv' in os.listdir(file_path) \
? ? ? ? ? ? ? ? and 'Quarterly_forecast.csv' in os.listdir(file_path):
? ? ? ? ? ? #如果各种文件都存在,执行摘要计算
? ? ? ? ? ? m4_summary = M4Summary(file_path, self.args.root_path)
? ? ? ? ? ? # m4_forecast.set_index(m4_winner_forecast.columns[0], inplace=True)
? ? ? ? ? ? smape_results, owa_results, mape, mase = m4_summary.evaluate()
? ? ? ? ? ? #打印各种评估指标
? ? ? ? ? ? print('smape:', smape_results)
? ? ? ? ? ? print('mape:', mape)
? ? ? ? ? ? print('mase:', mase)
? ? ? ? ? ? print('owa:', owa_results)
? ? ? ? else:
? ? ? ? ? ? print('After all 6 tasks are finished, you can calculate the averaged index')
? ? ? ? return
?