【算法题】63. 不同路径 II

发布时间:2024年01月20日

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
示例 2:
输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j] 为 0 或 1

题解

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int n = obstacleGrid.length, m = obstacleGrid[0].length;
        int[] f = new int[m];

        f[0] = obstacleGrid[0][0] == 0 ? 1 : 0;
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                if (obstacleGrid[i][j] == 1) {
                    f[j] = 0;
                    continue;
                }
                if (j - 1 >= 0 && obstacleGrid[i][j - 1] == 0) {
                    f[j] += f[j - 1];
                }
            }
        }
        
        return f[m - 1];
    }
}

来自力扣官方题解

文章来源:https://blog.csdn.net/weixin_38838143/article/details/135713551
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。