?🌈个人主页:前端青山
🔥系列专栏:JavaScript篇
🔖人终将被年少不可得之物困其一生
依旧青山,本期给大家带来JavaScript篇专栏内容:JavaScript-数据缓存与内存泄露
目录
首先,JavaScript
是一门单线程的语言,意味着同一时间内只能做一件事,但是这并不意味着单线程就是阻塞,而实现单线程非阻塞的方法就是事件循环
在JavaScript
中,所有的任务都可以分为
同步任务:立即执行的任务,同步任务一般会直接进入到主线程中执行
异步任务:异步执行的任务,比如ajax
网络请求,setTimeout
定时函数等
同步任务与异步任务的运行流程图如下:
从上面我们可以看到,同步任务进入主线程,即主执行栈,异步任务进入任务队列,主线程内的任务执行完毕为空,会去任务队列读取对应的任务,推入主线程执行。上述过程的不断重复就事件循环
如果将任务划分为同步任务和异步任务并不是那么的准确,举个例子:
console.log(1)
?
setTimeout(()=>{
? ?console.log(2)
}, 0)
?
new Promise((resolve, reject)=>{
? ?console.log('new Promise')
? ?resolve()
}).then(()=>{
? ?console.log('then')
})
?
console.log(3)
如果按照上面流程图来分析代码,我们会得到下面的执行步骤:
console.log(1)
,同步任务,主线程中执行
setTimeout()
,异步任务,放到 Event Table
,0 毫秒后console.log(2)
回调推入 Event Queue
中
new Promise
,同步任务,主线程直接执行
.then
,异步任务,放到 Event Table
console.log(3)
,同步任务,主线程执行
所以按照分析,它的结果应该是 1
=> 'new Promise'
=> 3
=> 2
=> 'then'
但是实际结果是:1
=>'new Promise'
=> 3
=> 'then'
=> 2
出现分歧的原因在于异步任务执行顺序,事件队列其实是一个“先进先出”的数据结构,排在前面的事件会优先被主线程读取
例子中 setTimeout
回调事件是先进入队列中的,按理说应该先于 .then
中的执行,但是结果却偏偏相反
原因在于异步任务还可以细分为微任务与宏任务
一个需要异步执行的函数,执行时机是在主函数执行结束之后、当前宏任务结束之前
常见的微任务有:
Promise.then
MutaionObserver
Object.observe(已废弃;Proxy 对象替代)
process.nextTick(Node.js)
宏任务的时间粒度比较大,执行的时间间隔是不能精确控制的,对一些高实时性的需求就不太符合
常见的宏任务有:
script (可以理解为外层同步代码)
setTimeout/setInterval
UI rendering/UI事件
postMessage、MessageChannel
setImmediate、I/O(Node.js)
这时候,事件循环,宏任务,微任务的关系如图所示
按照这个流程,它的执行机制是:
执行一个宏任务,如果遇到微任务就将它放到微任务的事件队列中
当前宏任务执行完成后,会查看微任务的事件队列,然后将里面的所有微任务依次执行完
回到上面的题目
console.log(1)
setTimeout(()=>{
? ?console.log(2)
}, 0)
new Promise((resolve, reject)=>{
? ?console.log('new Promise')
? ?resolve()
}).then(()=>{
? ?console.log('then')
})
console.log(3)
流程如下
// 遇到 console.log(1) ,直接打印 1
// 遇到定时器,属于新的宏任务,留着后面执行
// 遇到 new Promise,这个是直接执行的,打印 'new Promise'
// .then 属于微任务,放入微任务队列,后面再执行
// 遇到 console.log(3) 直接打印 3
// 好了本轮宏任务执行完毕,现在去微任务列表查看是否有微任务,发现 .then 的回调,执行它,打印 'then'
// 当一次宏任务执行完,再去执行新的宏任务,这里就剩一个定时器的宏任务了,执行它,打印 2
async
是异步的意思,await
则可以理解为 async wait
。所以可以理解async
就是用来声明一个异步方法,而 await
是用来等待异步方法执行
async
函数返回一个promise
对象,下面两种方法是等效的
function f() {
? ?return Promise.resolve('TEST');
}
?
// asyncF is equivalent to f!
async function asyncF() {
? ?return 'TEST';
}
正常情况下,await
命令后面是一个 Promise
对象,返回该对象的结果。如果不是 Promise
对象,就直接返回对应的值
async function f(){
? ?// 等同于
? ?// return 123
? ?return await 123
}
f().then(v => console.log(v)) // 123
不管await
后面跟着的是什么,await
都会阻塞后面的代码
async function fn1 (){
? ?console.log(1)
? ?await fn2()
? ?console.log(2) // 阻塞
}
?
async function fn2 (){
? ?console.log('fn2')
}
?
fn1()
console.log(3)
上面的例子中,await
会阻塞下面的代码(即加入微任务队列),先执行 async
外面的同步代码,同步代码执行完,再回到 async
函数中,再执行之前阻塞的代码
所以上述输出结果为:1
,fn2
,3
,2
通过对上面的了解,我们对JavaScript
对各种场景的执行顺序有了大致的了解
这里直接上代码:
async function async1() {
? ?console.log('async1 start')
? ?await async2()
? ?console.log('async1 end')
}
async function async2() {
? ?console.log('async2')
}
console.log('script start')
setTimeout(function () {
? ?console.log('settimeout')
})
async1()
new Promise(function (resolve) {
? ?console.log('promise1')
? ?resolve()
}).then(function () {
? ?console.log('promise2')
})
console.log('script end')
分析过程:
执行整段代码,遇到 console.log('script start')
直接打印结果,输出 script start
遇到定时器了,它是宏任务,先放着不执行
遇到 async1()
,执行 async1
函数,先打印 async1 start
,下面遇到await
怎么办?先执行 async2
,打印 async2
,然后阻塞下面代码(即加入微任务列表),跳出去执行同步代码
跳到 new Promise
这里,直接执行,打印 promise1
,下面遇到 .then()
,它是微任务,放到微任务列表等待执行
最后一行直接打印 script end
,现在同步代码执行完了,开始执行微任务,即 await
下面的代码,打印 async1 end
继续执行下一个微任务,即执行 then
的回调,打印 promise2
上一个宏任务所有事都做完了,开始下一个宏任务,就是定时器,打印 settimeout
所以最后的结果是:script start
、async1 start
、async2
、promise1
、script end
、async1 end
、promise2
、settimeout
内存泄漏(Memory leak)是在计算机科学中,由于疏忽或错误造成程序未能释放已经不再使用的内存
并非指内存在物理上的消失,而是应用程序分配某段内存后,由于设计错误,导致在释放该段内存之前就失去了对该段内存的控制,从而造成了内存的浪费
程序的运行需要内存。只要程序提出要求,操作系统或者运行时就必须供给内存
对于持续运行的服务进程,必须及时释放不再用到的内存。否则,内存占用越来越高,轻则影响系统性能,重则导致进程崩溃
在C
语言中,因为是手动管理内存,内存泄露是经常出现的事情。
char * buffer;
buffer = (char*) malloc(42);
?
// Do something with buffer
?
free(buffer);
上面是 C 语言代码,malloc
方法用来申请内存,使用完毕之后,必须自己用free
方法释放内存。
这很麻烦,所以大多数语言提供自动内存管理,减轻程序员的负担,这被称为"垃圾回收机制"
Javascript 具有自动垃圾回收机制(GC:Garbage Collecation),也就是说,执行环境会负责管理代码执行过程中使用的内存
原理:垃圾收集器会定期(周期性)找出那些不在继续使用的变量,然后释放其内存
通常情况下有两种实现方式:
标记清除
引用计数
JavaScript
最常用的垃圾收回机制
当变量进入执行环境是,就标记这个变量为“进入环境“。进入环境的变量所占用的内存就不能释放,当变量离开环境时,则将其标记为“离开环境“
垃圾回收程序运行的时候,会标记内存中存储的所有变量。然后,它会将所有在上下文中的变量,以及被在上下文中的变量引用的变量的标记去掉
在此之后再被加上标记的变量就是待删除的了,原因是任何在上下文中的变量都访问不到它们了
随后垃圾回收程序做一次内存清理,销毁带标记的所有值并收回它们的内存
举个例子:? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
语言引擎有一张"引用表",保存了内存里面所有的资源(通常是各种值)的引用次数。如果一个值的引用次数是0
,就表示这个值不再用到了,因此可以将这块内存释放
如果一个值不再需要了,引用数却不为0
,垃圾回收机制无法释放这块内存,从而导致内存泄漏
const arr = [1, 2, 3, 4];
console.log('hello world');
上面代码中,数组[1, 2, 3, 4]
是一个值,会占用内存。变量arr
是仅有的对这个值的引用,因此引用次数为1
。尽管后面的代码没有用到arr
,它还是会持续占用内存
如果需要这块内存被垃圾回收机制释放,只需要设置如下:
arr = null
通过设置arr
为null
,就解除了对数组[1,2,3,4]
的引用,引用次数变为 0,就被垃圾回收了
有了垃圾回收机制,不代表不用关注内存泄露。那些很占空间的值,一旦不再用到,需要检查是否还存在对它们的引用。如果是的话,就必须手动解除引用
意外的全局变量
function foo(arg) {
? ?bar = "this is a hidden global variable";
}
另一种意外的全局变量可能由 this
创建:
function foo() {
? ?this.variable = "potential accidental global";
}
// foo 调用自己,this 指向了全局对象(window)
foo();
上述使用严格模式,可以避免意外的全局变量
定时器也常会造成内存泄露
var someResource = getData();
setInterval(function() {
? ?var node = document.getElementById('Node');
? ?if(node) {
? ? ? ?// 处理 node 和 someResource
? ? ? ?node.innerHTML = JSON.stringify(someResource));
? }
}, 1000);
如果id
为Node的元素从DOM
中移除,该定时器仍会存在,同时,因为回调函数中包含对someResource
的引用,定时器外面的someResource
也不会被释放
包括我们之前所说的闭包,维持函数内局部变量,使其得不到释放
function bindEvent() {
?var obj = document.createElement('XXX');
?var unused = function () {
? ?console.log(obj, '闭包内引用obj obj不会被释放');
};
?obj = null; // 解决方法
}
没有清理对DOM
元素的引用同样造成内存泄露
const refA = document.getElementById('refA');
document.body.removeChild(refA); // dom删除了
console.log(refA, 'refA'); // 但是还存在引用能console出整个div 没有被回收
refA = null;
console.log(refA, 'refA'); // 解除引用
包括使用事件监听addEventListener
监听的时候,在不监听的情况下使用removeEventListener
取消对事件监听