class Solution {
List<String> result = new ArrayList<>();
public List<String> restoreIpAddresses(String s) {
StringBuilder sb = new StringBuilder(s);
backTracking(sb, 0, 0);
return result;
}
private void backTracking(StringBuilder s, int startIndex, int dotCount){
if(dotCount == 3){
if(isValid(s, startIndex, s.length() - 1)){
result.add(s.toString());
}
return;
}
for(int i = startIndex; i < s.length(); i++){
if(isValid(s, startIndex, i)){
s.insert(i + 1, '.');
backTracking(s, i + 2, dotCount + 1);
s.deleteCharAt(i + 1);
}else{
break;
}
}
}
//[start, end]
private boolean isValid(StringBuilder s, int start, int end){
if(start > end)
return false;
if(s.charAt(start) == '0' && start != end)
return false;
int num = 0;
for(int i = start; i <= end; i++){
int digit = s.charAt(i) - '0';
num = num * 10 + digit;
if(num > 255)
return false;
}
return true;
}
}
思路:与day27的分割回文子串类似,主要是要理解isVaild的思路,当dotCount == 3时,还要进行判断,然后将符合的加入result中
class Solution {
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
public List<List<Integer>> subsets(int[] nums) {
subsetsHelper(nums, 0);
return result;
}
private void subsetsHelper(int[] nums, int startIndex){
result.add(new ArrayList<>(path));//「遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合」。
if (startIndex >= nums.length){ //终止条件可不加
return;
}
for (int i = startIndex; i < nums.length; i++){
path.add(nums[i]);
subsetsHelper(nums, i + 1);
path.removeLast();
}
}
}
思路:和分割问题类似,主要区别是要在每个节点收获结果,所以result.add(new ArrayList<>(path)要放在最上面。
class Solution {
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
boolean[] used;
public List<List<Integer>> subsetsWithDup(int[] nums) {
if (nums.length == 0){
result.add(path);
return result;
}
Arrays.sort(nums);
used = new boolean[nums.length];
subsetsWithDupHelper(nums, 0);
return result;
}
private void subsetsWithDupHelper(int[] nums, int startIndex){
result.add(new ArrayList<>(path));
if (startIndex >= nums.length){
return;
}
for (int i = startIndex; i < nums.length; i++){
if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]){
continue;
}
path.add(nums[i]);
used[i] = true;
subsetsWithDupHelper(nums, i + 1);
path.removeLast();
used[i] = false;
}
}
}
思路:和?40.组合总和II方法一样,都是要进行树层去重。关键是used数组的使用,要确保used[i-1]==false;然后就是每个节点都收获结果。