行列式有如下三个性质:
代数余子式是用较小的矩阵的行列式来写出 n 阶行列式的公式。
将原公式中属于矩阵第一行的 a1j提出来,其系数即为代数余子式,是一个低阶行列式的值。这个低阶行列式是由原矩阵去掉 a1j所在的行和列组成的。
对矩阵中任意元素 aij而言,其代数余子式 Cij就是矩阵的行列式的公式中 aij的系数。Cij等于原矩阵移除第 i 行和第 j 列后剩余元素组成的 n-1 阶矩阵的行列式数值乘以(-1)i+j。(Cij在 i+j 为偶数时为正,奇数时为负数。)
对于矩阵行列式的计算,消元的得到主元是一个很好的方法,与之相比行列式的展开公式较为复杂,而代数余子式的方法介于两者之间,它的核心想法是通过降阶来将原来的行列式展开成更简单的行列式。
举三对角阵(tridiagonal matrix)为例,它除了对角线和对角线两侧相邻的元素之外,其它元素均为 0。
例如由 1 组成的 4 阶三对角阵为
从矩阵的特殊结构我们可以得到:
∣
A
n
∣
=
∣
A
n
?
1
∣
?
∣
A
n
?
2
∣
\begin{vmatrix} A_n \end{vmatrix} =\begin{vmatrix} A_{n-1} \end{vmatrix} -\begin{vmatrix} A_{n-2} \end{vmatrix}
?An??
?=
?An?1??
??
?An?2??
?
由 1 组成的 n 阶三对角阵的行列式从 1 阶开始按照 1,0,-1,-1,0,1 进行循环。