【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)

发布时间:2024年01月18日

Flink 系列文章

一、Flink 专栏

Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。

  • 1、Flink 部署系列
    本部分介绍Flink的部署、配置相关基础内容。

  • 2、Flink基础系列
    本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。

  • 3、Flik Table API和SQL基础系列
    本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。

  • 4、Flik Table API和SQL提高与应用系列
    本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。

  • 5、Flink 监控系列
    本部分和实际的运维、监控工作相关。

二、Flink 示例专栏

Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。

两专栏的所有文章入口点击:Flink 系列文章汇总索引



本文介绍了flink 维表的前三种实现方式,即通过初始化静态数据、通过异步IO访问外部数据和通过广播维表数据。

如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。

本文除了maven依赖外,本文还依赖redis环境。

本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)

一、maven依赖及数据结构

1、maven依赖

本文的所有示例均依赖本部分的pom.xml内容,可能针对下文中的某些示例存在过多的引入,根据自己的情况进行删减。

<properties>
	<encoding>UTF-8</encoding>
	<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
	<maven.compiler.source>1.8</maven.compiler.source>
	<maven.compiler.target>1.8</maven.compiler.target>
	<java.version>1.8</java.version>
	<scala.version>2.12</scala.version>
	<flink.version>1.17.0</flink.version>
</properties>

<dependencies>
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-clients</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-java</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-table-common</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-streaming-java</artifactId>
		<version>${flink.version}</version>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-table-api-java-bridge</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-csv</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-json</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-planner -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-table-planner_2.12</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-api-java-uber -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-table-api-java-uber</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-runtime -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-table-runtime</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-connector-jdbc</artifactId>
		<version>3.1.0-1.17</version>
	</dependency>
	<dependency>
		<groupId>mysql</groupId>
		<artifactId>mysql-connector-java</artifactId>
		<version>5.1.38</version>
	</dependency>
	<dependency>
		<groupId>com.google.guava</groupId>
		<artifactId>guava</artifactId>
		<version>32.0.1-jre</version>
	</dependency>
	<!-- flink连接器 -->
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-connector-kafka</artifactId>
		<version>${flink.version}</version>
	</dependency>
	<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kafka -->
	<dependency>
		<groupId>org.apache.flink</groupId>
		<artifactId>flink-sql-connector-kafka</artifactId>
		<version>${flink.version}</version>
		<scope>provided</scope>
	</dependency>
	<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-compress -->
	<dependency>
		<groupId>org.apache.commons</groupId>
		<artifactId>commons-compress</artifactId>
		<version>1.24.0</version>
	</dependency>
	<dependency>
		<groupId>org.projectlombok</groupId>
		<artifactId>lombok</artifactId>
		<version>1.18.2</version>
	</dependency>
	<dependency>
		<groupId>org.apache.bahir</groupId>
		<artifactId>flink-connector-redis_2.12</artifactId>
		<version>1.1.0</version>
		<exclusions>
			<exclusion>
				<artifactId>flink-streaming-java_2.12</artifactId>
				<groupId>org.apache.flink</groupId>
			</exclusion>
			<exclusion>
				<artifactId>flink-runtime_2.12</artifactId>
				<groupId>org.apache.flink</groupId>
			</exclusion>
			<exclusion>
				<artifactId>flink-core</artifactId>
				<groupId>org.apache.flink</groupId>
			</exclusion>
			<exclusion>
				<artifactId>flink-java</artifactId>
				<groupId>org.apache.flink</groupId>
			</exclusion>
			<exclusion>
				<groupId>org.apache.flink</groupId>
				<artifactId>flink-table-api-java</artifactId>
			</exclusion>
			<exclusion>
				<groupId>org.apache.flink</groupId>
				<artifactId>flink-table-api-java-bridge_2.12</artifactId>
			</exclusion>
			<exclusion>
				<groupId>org.apache.flink</groupId>
				<artifactId>flink-table-common</artifactId>
			</exclusion>
			<exclusion>
				<groupId>org.apache.flink</groupId>
				<artifactId>flink-table-planner_2.12</artifactId>
			</exclusion>
		</exclusions>
	</dependency>
	<!-- https://mvnrepository.com/artifact/com.alibaba/fastjson -->
	<dependency>
		<groupId>com.alibaba</groupId>
		<artifactId>fastjson</artifactId>
		<version>2.0.43</version>
	</dependency>
</dependencies>

2、数据结构

本示例仅仅为实现需求:将订单中uId与用户id进行关联,然后输出Tuple2<Order, String>。

  • 事实流 order
    // 事实表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class Order {
        private Integer id;
        private Integer uId;
        private Double total;
    }
  • 维度流 user
    // 维表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class User {
        private Integer id;
        private String name;
        private Double balance;
        private Integer age;
        private String email;
    }

3、数据源

事实流数据有几种,具体见示例部分,比如socket、redis、kafka等
维度表流有几种,具体见示例部分,比如静态数据、mysql、socket、kafka等。
如此,实现本文中的示例就需要准备好相应的环境,即mysql、redis、kafka、netcat等。

4、验证结果

本文提供的所有示例均为验证通过的示例,测试的数据均在每个示例中,分为事实流、维度流和运行结果进行注释,在具体的示例中关于验证不再赘述。

二、维表来源于初始化的静态数据

1、说明

通过定义一个类实现RichMapFunction,在open()中读取维表数据加载到内存中,在事实流map()方法中与维表数据进行关联。

由于数据存储于内存中,所以只适合小数据量并且维表数据更新频率不高的情况下使用。虽然可以在open中定义一个定时器定时更新维表,但是还是存在维表更新不及时的情况或资源开销较大的情况。一般如果数据量较小且不大会变(或变化影响也不大)的情况下,理想选择之一。

2、示例:将事实流与维表进行关联

import java.util.HashMap;
import java.util.Map;

import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/*
 * @Author: alanchan
 * @LastEditors: alanchan
 * @Description: 采用在RichMapfunction类的open方法中将维表数据加载到内存
 */
public class TestJoinDimFromStaticDataDemo {
    // 维表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class User {
        private Integer id;
        private String name;
        private Double balance;
        private Integer age;
        private String email;
    }

    // 事实表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class Order {
        private Integer id;
        private Integer uId;
        private Double total;
    }

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // order 事实流
        DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)
                .map(o -> {
                    String[] lines = o.split(",");
                    return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));
                });

        DataStream<Tuple2<Order, String>> result = orderDs.map(new RichMapFunction<Order, Tuple2<Order, String>>() {
            Map<Integer, User> userDim = null;

            // 维表-静态数据,本处使用的是匿名内部类实现的
            @Override
            public void open(Configuration parameters) throws Exception {
                userDim = new HashMap<>();
                userDim.put(1001, new User(1001, "alan", 20d, 18, "alan.chan.chn@163.com"));
                userDim.put(1002, new User(1002, "alanchan", 22d, 20, "alan.chan.chn@163.com"));
                userDim.put(1003, new User(1003, "alanchanchn", 23d, 22, "alan.chan.chn@163.com"));
                userDim.put(1004, new User(1004, "alan_chan", 21d, 19, "alan.chan.chn@163.com"));
                userDim.put(1005, new User(1005, "alan_chan_chn", 23d, 21, "alan.chan.chn@163.com"));
            }

            @Override
            public Tuple2<Order, String> map(Order value) throws Exception {
                return new Tuple2(value, userDim.get(value.getUId()).getName());
            }

        });

        result.print();
        // nc 输入
        // 1,1004,345
        // 2,1001,678
        
        // 控制台输出
        // 2> (TestJoinDimFromStaticData.Order(id=1, uId=1004, total=345.0),alan_chan)
        // 3> (TestJoinDimFromStaticData.Order(id=2, uId=1001, total=678.0),alan)
        env.execute("TestJoinDimFromStaticData");
    }
}

三、维表来源于第三方数据源

1、说明

这种方式是将维表数据存储在Redis、HBase、MySQL等外部存储中,事实流在关联维表数据的时候实时去外部存储中查询。

由于维度数据量不受内存限制,可以存储很大的数据量。同时维表数据来源于第三方数据源,读取速度受制于外部存储的读取速度。一般常见的做法该种方式较多。

2、示例:将事实流与维表进行关联-通过缓存降低性能开销

如果频繁的访问第三方数据源进行join,会带来很大的开销,为降低该种情况的开销,一般使用cache来减轻访问压力,但该种方式存在数据同步的不一致或延迟情况。如果使用缓存,则会存在将数据存在内存中,也会增加系统开销。该种情况的实际应用以具体的业务场景而定。本示例使用的是guava Cache,缓存的实现有很多种方式,具体以自己的实际情况进行选择。

本示例的数据源仅仅以静态的数据进行展示,实际上可能数据来源于Hbase、mysql等。

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;

import com.google.common.cache.CacheBuilder;
import com.google.common.cache.CacheLoader;
import com.google.common.cache.LoadingCache;
import com.google.common.cache.RemovalListener;
import com.google.common.cache.RemovalNotification;

import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/*
 * @Author: alanchan
 * @LastEditors: alanchan
 * @Description: 
 */
public class TestJoinDimFromCacheDataDemo {
    // 维表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class User {
        private Integer id;
        private String name;
        private Double balance;
        private Integer age;
        private String email;
    }

    // 事实表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class Order {
        private Integer id;
        private Integer uId;
        private Double total;
    }

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // order 实时流
        DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)
                .map(o -> {
                    String[] lines = o.split(",");
                    return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));
                });

        // user 维表
        DataStream<Tuple2<Order, String>> result = orderDs.map(new RichMapFunction<Order, Tuple2<Order, String>>() {
            // 缓存接口这里是LoadingCache,LoadingCache在缓存项不存在时可以自动加载缓存
            LoadingCache<Integer, User> userDim;

            @Override
            public void open(Configuration parameters) throws Exception {
                // 使用google LoadingCache来进行缓存
                // CacheBuilder的构造函数是私有的,只能通过其静态方法newBuilder()来获得CacheBuilder的实例
                userDim = CacheBuilder.newBuilder()
                        // 设置并发级别为8,并发级别是指可以同时写缓存的线程数
                        .concurrencyLevel(8)
                        // 最多缓存个数,超过了就根据最近最少使用算法来移除缓存
                        .maximumSize(1000)
                        // 设置写缓存后10分钟过期
                        .expireAfterWrite(10, TimeUnit.MINUTES)
                        // 设置缓存容器的初始容量为10
                        .initialCapacity(10)
                        // 设置要统计缓存的命中率
                        .recordStats()
                        // 指定移除通知
                        .removalListener(new RemovalListener<Integer, User>() {
                            @Override
                            public void onRemoval(RemovalNotification<Integer, User> removalNotification) {
                                System.out.println(removalNotification.getKey() + "被移除了,值为:" + removalNotification.getValue());
                            }
                        })
                        .build(
                                // 指定加载缓存的逻辑
                                new CacheLoader<Integer, User>() {
                                    @Override
                                    public User load(Integer uId) throws Exception {
                                        return dataSource(uId);
                                    }
                                });
                System.out.println("userDim:" + userDim.get(1002));
            }

            private User dataSource(Integer uId) {
                // 可以是任何数据源,本处仅仅示例
                Map<Integer, User> users = new HashMap<>();
                users.put(1001, new User(1001, "alan", 20d, 18, "alan.chan.chn@163.com"));
                users.put(1002, new User(1002, "alanchan", 22d, 20, "alan.chan.chn@163.com"));
                users.put(1003, new User(1003, "alanchanchn", 23d, 22, "alan.chan.chn@163.com"));
                users.put(1004, new User(1004, "alan_chan", 21d, 19, "alan.chan.chn@163.com"));
                users.put(1005, new User(1005, "alan_chan_chn", 23d, 21, "alan.chan.chn@163.com"));
                User user = null;
                if (users.containsKey(uId)) {
                    user = users.get(uId);
                }

                return user;
            }

            @Override
            public Tuple2<Order, String> map(Order value) throws Exception {
                return new Tuple2(value, userDim.get(value.getUId()).getName());
            }

        });

        result.print();
        // 输入数据
        // 7,1003,111
        // 8,1005,234
        // 9,1002,875

        // 控制台输出数据
        // 5> (TestJoinDimFromCacheDataDemo.Order(id=7, uId=1003, total=111.0),alanchanchn)
        // 6> (TestJoinDimFromCacheDataDemo.Order(id=8, uId=1005,  total=234.0),alan_chan_chn)
        // 7> (TestJoinDimFromCacheDataDemo.Order(id=9, uId=1002, total=875.0),alanchan)

        env.execute("TestJoinDimFromCacheDataDemo");
    }
}

3、示例:将事实流与维表进行关联-通过Flink 的异步 I/O提高系统效率

Flink与外部存储系统进行读写操作的时候可以使用同步方式,也就是发送一个请求后等待外部系统响应,然后再发送第二个读写请求,这样的方式吞吐量比较低,可以用提高并行度的方式来提高吞吐量,但是并行度多了也就导致了进程数量多了,占用了大量的资源。

Flink中可以使用异步IO来读写外部系统,这要求外部系统客户端支持异步IO,比如redis、MongoDB等。

更多内容见文章:
55、Flink之用于外部数据访问的异步 I/O介绍及示例

1)、redis 异步I/O实现

package org.tablesql.join;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CompletableFuture;
import java.util.function.Supplier;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.async.ResultFuture;
import org.apache.flink.streaming.api.functions.async.RichAsyncFunction;
import org.tablesql.join.TestJoinDimFromAsyncDataStreamDemo.Order;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

/*
 * @Author: alanchan
 * @LastEditors: alanchan
 * @Description: 
 */
public class JoinAyncFunctionByRedis extends RichAsyncFunction<Order, Tuple2<Order, String>> {
    private JedisPoolConfig config = null;

    private static String ADDR = "192.168.10.41";
    private static int PORT = 6379;
    private static int TIMEOUT = 10000;
    private JedisPool jedisPool = null;
    private Jedis jedis = null;

    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        config = new JedisPoolConfig();
        jedisPool = new JedisPool(config, ADDR, PORT, TIMEOUT);

        jedis = jedisPool.getResource();
    }

    @Override
    public void asyncInvoke(Order input, ResultFuture<Tuple2<Order, String>> resultFuture) throws Exception {
        // order 实时流中的单行数据
        System.out.println("输入参数input----:" + input);
        // 发起一个异步请求,返回结果
        CompletableFuture.supplyAsync(new Supplier<String>() {
            @Override
            public String get() {
                // 数据格式:1002,alanchan,19,25,alan.chan.chn@163.com
                String userLine = jedis.hget("AsyncReadUserById_Redis", input.getUId() + "");
                String[] userTemp = userLine.split(",");
                // 返回 用户名
                return userTemp[1];
            }
        }).thenAccept((String dbResult) -> {
            // 设置请求完成时的回调,将结果返回
            List list = new ArrayList<Tuple2<Order, String>>();
            list.add(new Tuple2<>(input, dbResult));
            resultFuture.complete(list);
        });
    }

    // 连接超时的时候调用的方法
    public void timeout(Order input, ResultFuture<Tuple2<Order, String>> resultFuture)
            throws Exception {
        List list = new ArrayList<Tuple2<Order, String>>();
        // 数据源超时,不能获取到维表信息,置为"
        list.add(new Tuple2<>(input, ""));
        resultFuture.complete(list);
    }

    @Override
    public void close() throws Exception {
        super.close();
        if (jedis.isConnected()) {
            jedis.close();
        }

    }
}

2)、实现事实流与维度流join


package org.tablesql.join;

import java.util.concurrent.TimeUnit;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.AsyncDataStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

/*
 * @Author: alanchan
 * @LastEditors: alanchan
 * @Description: 
 */
public class TestJoinDimFromAsyncDataStreamDemo {
    // 维表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class User {
        private Integer id;
        private String name;
        private Double balance;
        private Integer age;
        private String email;
    }

    // 事实表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class Order {
        private Integer id;
        private Integer uId;
        private Double total;
    }

    public static void main(String[] args) throws Exception {
        testJoinAyncFunctionByRedis();
    }

    static void testJoinAyncFunctionByRedis() throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // order 实时流
        DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)
                .map(o -> {
                    String[] lines = o.split(",");
                    return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));
                });

        // 保证顺序:异步返回的结果保证顺序,超时时间1秒,最大容量2,超出容量触发反压
        DataStream<Tuple2<Order, String>> result = AsyncDataStream.orderedWait(orderDs, new JoinAyncFunctionByRedis(),
                1000L, TimeUnit.MILLISECONDS, 2);

        result.print("result:");

        // 允许乱序:异步返回的结果允许乱序,超时时间1秒,最大容量2,超出容量触发反压
        DataStream<Tuple2<Order, String>> unorderedResult = AsyncDataStream
                .unorderedWait(orderDs, new JoinAyncFunctionByRedis(), 1000L, TimeUnit.MILLISECONDS, 2)
                .setParallelism(1);
        unorderedResult.print("unorderedResult");
        
        // redis的操作命令及数据
        // 127.0.0.1:6379> hset AsyncReadUserById_Redis 1001 '1001,alan,18,20,alan.chan.chn@163.com'
        // (integer) 1
        // 127.0.0.1:6379> hset AsyncReadUserById_Redis 1002 '1002,alanchan,19,25,alan.chan.chn@163.com'
        // (integer) 1
        // 127.0.0.1:6379> hset AsyncReadUserById_Redis 1003 '1003,alanchanchn,20,30,alan.chan.chn@163.com'
        // (integer) 1
        // 127.0.0.1:6379> hset AsyncReadUserById_Redis 1004 '1004,alan_chan,27,20,alan.chan.chn@163.com'
        // (integer) 1
        // 127.0.0.1:6379> hset AsyncReadUserById_Redis 1005 '1005,alan_chan_chn,36,10,alan.chan.chn@163.com'
        // (integer) 1
        // 127.0.0.1:6379> hgetall AsyncReadUserById_Redis
        // 1) "1001"
        // 2) "1001,alan,18,20,alan.chan.chn@163.com"
        // 3) "1002"
        // 4) "1002,alanchan,19,25,alan.chan.chn@163.com"
        // 5) "1003"
        // 6) "1003,alanchanchn,20,30,alan.chan.chn@163.com"
        // 7) "1004"
        // 8) "1004,alan_chan,27,20,alan.chan.chn@163.com"
        // 9) "1005"
        // 10) "1005,alan_chan_chn,36,10,alan.chan.chn@163.com"
        
        // 输入数据
        // 13,1002,811
        // 14,1004,834
        // 15,1005,975

        // 控制台输出数据
        // 输入参数input----:TestJoinDimFromAsyncDataStreamDemo.Order(id=13, uId=1002, total=811.0)
        // result::12> (TestJoinDimFromAsyncDataStreamDemo.Order(id=13, uId=1002, total=811.0),1002,alanchan,19,25,alan.chan.chn@163.com)
        // 输入参数input----:TestJoinDimFromAsyncDataStreamDemo.Order(id=13, uId=1002, total=811.0)
        // unorderedResult:9> (TestJoinDimFromAsyncDataStreamDemo.Order(id=13, uId=1002, total=811.0),1002,alanchan,19,25,alan.chan.chn@163.com)
        // result::5> (TestJoinDimFromAsyncDataStreamDemo.Order(id=14, uId=1004, total=834.0),alan_chan)
        // 输入参数input----:TestJoinDimFromAsyncDataStreamDemo.Order(id=14, uId=1004, total=834.0)
        // unorderedResult:2> (TestJoinDimFromAsyncDataStreamDemo.Order(id=14, uId=1004, total=834.0),alan_chan)
        // 输入参数input----:TestJoinDimFromAsyncDataStreamDemo.Order(id=15, uId=1005, total=975.0)
        // result::6> (TestJoinDimFromAsyncDataStreamDemo.Order(id=15, uId=1005, total=975.0),alan_chan_chn)
        // 输入参数input----:TestJoinDimFromAsyncDataStreamDemo.Order(id=15, uId=1005, total=975.0)
        // unorderedResult:3> (TestJoinDimFromAsyncDataStreamDemo.Order(id=15, uId=1005, total=975.0),alan_chan_chn)

        env.execute("TestJoinDimFromAsyncDataStreamDemo");
    }

}

四、通过广播将维表数据传递到下游

1、说明

利用Flink的Broadcast State将维表数据流广播到下游做join操作。该种方式实现比较方便,完全满足需求,美中不足的是需要充分利用系统的内存,也就是将数据存储在内容中。

更多内容见文章:
53、Flink 的Broadcast State 模式介绍及示例

2、示例:将事实流与维表进行关联-通过Flink 的Broadcast

1)、广播实现

/*
 * @Author: alanchan
 * @LastEditors: alanchan
 * @Description: 
 */
package org.tablesql.join;

import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.common.state.ReadOnlyBroadcastState;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction;
import org.apache.flink.util.Collector;
import org.tablesql.join.TestJoinDimFromBroadcastDataStreamDemo.Order;
import org.tablesql.join.TestJoinDimFromBroadcastDataStreamDemo.User;

// final BroadcastProcessFunction<IN1, IN2, OUT> function)
public class JoinBroadcastProcessFunctionImpl extends BroadcastProcessFunction<Order, User, Tuple2<Order, String>> {
    // 用于存储规则名称与规则本身的 map 存储结构 
    MapStateDescriptor<Integer, User> broadcastDesc;

    JoinBroadcastProcessFunctionImpl(MapStateDescriptor<Integer, User> broadcastDesc) {
        this.broadcastDesc = broadcastDesc;
    }

    // 负责处理广播流的元素
    @Override
    public void processBroadcastElement(User value,
            BroadcastProcessFunction<Order, User, Tuple2<Order, String>>.Context ctx,
            Collector<Tuple2<Order, String>> out) throws Exception {
        System.out.println("收到广播数据:" + value);
        // 得到广播流的存储状态
        ctx.getBroadcastState(broadcastDesc).put(value.getId(), value);
    }

    // 处理非广播流,关联维度
    @Override
    public void processElement(Order value,
            BroadcastProcessFunction<Order, User, Tuple2<Order, String>>.ReadOnlyContext ctx,
            Collector<Tuple2<Order, String>> out) throws Exception {
        // 得到广播流的存储状态
        ReadOnlyBroadcastState<Integer, User> state = ctx.getBroadcastState(broadcastDesc);

        out.collect(new Tuple2<>(value, state.get(value.getUId()).getName()));
    }
}

2)、实现事实流与维度流join

/*
 * @Author: alanchan
 * @LastEditors: alanchan
 * @Description: 
 */
package org.tablesql.join;

import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.streaming.api.datastream.BroadcastStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;

public class TestJoinDimFromBroadcastDataStreamDemo {
    // 维表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class User {
        private Integer id;
        private String name;
        private Double balance;
        private Integer age;
        private String email;
    }

    // 事实表
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    static class Order {
        private Integer id;
        private Integer uId;
        private Double total;
    }

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // order 实时流
        DataStream<Order> orderDs = env.socketTextStream("192.168.10.42", 9999)
                .map(o -> {
                    String[] lines = o.split(",");
                    return new Order(Integer.valueOf(lines[0]), Integer.valueOf(lines[1]), Double.valueOf(lines[2]));
                });

        // user 实时流
        DataStream<User> userDs = env.socketTextStream("192.168.10.42", 8888)
                .map(o -> {
                    String[] lines = o.split(",");
                    return new User(Integer.valueOf(lines[0]), lines[1], Double.valueOf(lines[2]), Integer.valueOf(lines[3]), lines[4]);
                }).setParallelism(1);
                
        // 一个 map descriptor,它描述了用于存储规则名称与规则本身的 map 存储结构
        // MapStateDescriptor<String, Rule> ruleStateDescriptor = new MapStateDescriptor<>(
        //         "RulesBroadcastState",
        //         BasicTypeInfo.STRING_TYPE_INFO,
        //         TypeInformation.of(new TypeHint<Rule>() {
        //         }));

        // 广播流,广播规则并且创建 broadcast state
        // BroadcastStream<Rule> ruleBroadcastStream = ruleStream.broadcast(ruleStateDescriptor);

        // 将user流(维表)定义为广播流
        final MapStateDescriptor<Integer, User> broadcastDesc = new MapStateDescriptor("Alan_RulesBroadcastState",
                Integer.class,
                User.class);

        BroadcastStream<User> broadcastStream = userDs.broadcast(broadcastDesc);

        // 需要由非广播流来进行调用
        DataStream result = orderDs.connect(broadcastStream)
                .process(new JoinBroadcastProcessFunctionImpl(broadcastDesc));

        result.print();
        // user 流数据(维度表),由于未做容错处理,需要先广播维度数据,否则会出现空指针异常
        // 1001,alan,18,20,alan.chan.chn@163.com
        // 1002,alanchan,19,25,alan.chan.chn@163.com
        // 1003,alanchanchn,20,30,alan.chan.chn@163.com
        // 1004,alan_chan,27,20,alan.chan.chn@163.com
        // 1005,alan_chan_chn,36,10,alan.chan.chn@163.com

        // order 流数据
        // 16,1002,211
        // 17,1004,234
        // 18,1005,175
        
        // 控制台输出
        // 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1001, name=alan, balance=18.0, age=20, email=alan.chan.chn@163.com)
        // ......
        // 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1001, name=alan, balance=18.0, age=20, email=alan.chan.chn@163.com)
        // 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1002, name=alanchan, balance=19.0, age=25, email=alan.chan.chn@163.com)
        // ......
        // 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1002, name=alanchan, balance=19.0, age=25, email=alan.chan.chn@163.com)
        // 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1003, name=alanchanchn, balance=20.0, age=30, email=alan.chan.chn@163.com)
        // ......
        // 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1003, name=alanchanchn, balance=20.0, age=30, email=alan.chan.chn@163.com)
        // 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1004, name=alan_chan, balance=27.0, age=20, email=alan.chan.chn@163.com)
        // ......
        // 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1004, name=alan_chan, balance=27.0, age=20, email=alan.chan.chn@163.com)
        // 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1005, name=alan_chan_chn, balance=36.0, age=10, email=alan.chan.chn@163.com)
        // ......
        // 收到广播数据:TestJoinDimFromBroadcastDataStreamDemo.User(id=1005, name=alan_chan_chn, balance=36.0, age=10, email=alan.chan.chn@163.com)
        // 7> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=16, uId=1002, total=211.0),alanchan)
        // 8> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=17, uId=1004, total=234.0),alan_chan)
        // 9> (TestJoinDimFromBroadcastDataStreamDemo.Order(id=18, uId=1005, total=175.0),alan_chan_chn)

        env.execute();

    }

 }

以上,本文介绍了flink 维表的前三种实现方式,即通过初始化静态数据、通过异步IO访问外部数据和通过广播维表数据。

本专题分为以下几篇文章:
【flink番外篇】15、Flink维表实战之6种实现方式-初始化的静态数据
【flink番外篇】15、Flink维表实战之6种实现方式-维表来源于第三方数据源
【flink番外篇】15、Flink维表实战之6种实现方式-通过广播将维表数据传递到下游
【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(1)
【flink番外篇】15、Flink维表实战之6种实现方式-完整版(2)

文章来源:https://blog.csdn.net/chenwewi520feng/article/details/135449763
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。