基于变换域的模版匹配

发布时间:2024年01月17日

模板匹配原理

图像的空间域与其他域之间的变换,如傅里叶变换,小波变换,轮廓波变换,剪切波变换等,实际上是图像在其他坐标领域中的表现。在空间域中,图像的信息是像素值和坐标位置;在其他域中,如傅里叶变换,图像的信息就是频率和幅度。简单的讲就是从不同的角度看图像而已。在其他域中对图像进行模板匹配处理,称为基于变换域的模板匹配。

基于傅里叶变换的图像匹配是典型的基于变换域的模板匹配方法,图像的旋转、平移、比例变换等均能在傅里叶变换的频域中反映出来。

基于快速傅里叶互变换的模板匹配?

Matlab程序代码

%% 读取背景背景和模板图像,并将其转化为灰度图

template = rgb2gray(imread('baby_mask.jpg'));

background = rgb2gray(imread('baby.jpg'));?

%% 获取图像的尺寸

[by,bx] = size(background);

[ty,tx] = size(template); % used for bbox placement?

%% 进行傅里叶变换,计算频谱数据

Ga = fft2(background);

Gb = fft2(template, by, bx);

c = real(ifft2((Ga.*conj(Gb))./abs(Ga.*conj(Gb))));

%% 画出互相关矩阵图像

figure;

surf(c),

shading flat; % plot correlation?

%% 获取互相关函数的峰值位置
[max_c, imax]   = max(abs(c(:)));
[ypeak, xpeak] = find(c == max(c(:)));  ?
%% 计算背景图像中的匹配区域的位置
position = [xpeak(1), ypeak(1), tx, ty];?
%% 画出方框图
hFig = figure;
hAx  = axes;
imshow(background, 'Parent', hAx);
rectangle('Position',position,'LineWidth',0.8,'EdgeColor','r');
??

结果图片?

?

文章来源:https://blog.csdn.net/qq_20660115/article/details/135660017
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。