第一种方案就是查数据库的方案,大家都能够想到,代码如下:
public class UsernameUniquenessChecker {
private static final String DB_URL = "jdbc:mysql://localhost:3306/your_database";
private static final String DB_USER = "your_username";
private static final String DB_PASSWORD = "your_password";
public static boolean isUsernameUnique(String username) {
try (Connection conn = DriverManager.getConnection(DB_URL, DB_USER, DB_PASSWORD)) {
String sql = "SELECT COUNT(*) FROM users WHERE username = ?";
try (PreparedStatement stmt = conn.prepareStatement(sql)) {
stmt.setString(1, username);
try (ResultSet rs = stmt.executeQuery()) {
if (rs.next()) {
int count = rs.getInt(1);
return count == 0; // If count is 0, username is unique
}
}
}
} catch (SQLException e) {
e.printStackTrace();
}
return false; // In case of an error, consider the username as non-unique
}
public static void main(String[] args) {
String desiredUsername = "new_user";
boolean isUnique = isUsernameUnique(desiredUsername);
if (isUnique) {
System.out.println("Username '" + desiredUsername + "' is unique. Proceed with registration.");
} else {
System.out.println("Username '" + desiredUsername + "' is already in use. Choose a different one.");
}
}
}
这种方法会带来如下问题:
性能问题,延迟高 。 如果数据量很大,查询速度慢。另外,数据库查询涉及应用程序服务器和数据库服务器之间的网络通信。建立连接、发送查询和接收响应所需的时间也会导致延迟。
数据库负载过高。频繁执行 SELECT 查询来检查用户名唯一性,每个查询需要数据库资源,包括CPU和I/O。
可扩展性差。数据库对并发连接和资源有限制。如果注册率继续增长,数据库服务器可能难以处理数量增加的传入请求。垂直扩展数据库(向单个服务器添加更多资源)可能成本高昂并且可能有限制。
为了解决数据库调用用户名唯一性检查的性能问题,引入了高效的Redis缓存。
public class UsernameCache {
private static final String REDIS_HOST = "localhost";
private static final int REDIS_PORT = 6379;
private static final int CACHE_EXPIRATION_SECONDS = 3600;
private static JedisPool jedisPool;
// Initialize the Redis connection pool
static {
JedisPoolConfig poolConfig = new JedisPoolConfig();
jedisPool = new JedisPool(poolConfig, REDIS_HOST, REDIS_PORT);
}
// Method to check if a username is unique using the Redis cache
public static boolean isUsernameUnique(String username) {
try (Jedis jedis = jedisPool.getResource()) {
// Check if the username exists in the Redis cache
if (jedis.sismember("usernames", username)) {
return false; // Username is not unique
}
} catch (Exception e) {
e.printStackTrace();
// Handle exceptions or fallback to database query if Redis is unavailable
}
return true; // Username is unique (not found in cache)
}
// Method to add a username to the Redis cache
public static void addToCache(String username) {
try (Jedis jedis = jedisPool.getResource()) {
jedis.sadd("usernames", username); // Add the username to the cache set
jedis.expire("usernames", CACHE_EXPIRATION_SECONDS); // Set expiration time for the cache
} catch (Exception e) {
e.printStackTrace();
// Handle exceptions if Redis cache update fails
}
}
// Cleanup and close the Redis connection pool
public static void close() {
jedisPool.close();
}
}
这个方案最大的问题就是内存占用过大,假如每个用户名需要大约 20 字节的内存。你想要存储10亿个用户名的话,就需要20G的内存。
总内存 = 每条记录的内存使用量 * 记录数 = 20 字节/记录 * 1,000,000,000 条记录 = 20,000,000,000 字节 = 20,000,000 KB = 20,000 MB = 20 GB
直接缓存判断内存占用过大,有没有什么更好的办法呢?布隆过滤器就是很好的一个选择。
那究竟什么布隆过滤器呢?
布隆过滤器(Bloom Filter
)是一种数据结构,用于快速检查一个元素是否存在于一个大型数据集中,通常用于在某些情况下快速过滤掉不可能存在的元素,以减少后续更昂贵的查询操作。布隆过滤器的主要优点是它可以提供快速的查找和插入操作,并且在内存占用方面非常高效
具体的实现原理和数据结构如下图所示:
布隆过滤器的核心思想是使用一个位数组(bit array
)和一组哈希函数。
位数组(Bit Array) :布隆过滤器使用一个包含大量位的数组,通常初始化为全0。每个位可以存储两个值,通常是0或1。这些位被用来表示元素的存在或可能的存在。
哈希函数(Hash Functions) :布隆过滤器使用多个哈希函数,每个哈希函数可以将输入元素映射到位数组的一个或多个位置。这些哈希函数必须是独立且具有均匀分布特性。
那么具体是怎么做的呢?
添加元素:如上图所示,当将字符串“xuyang
”,“alvin
”插入布隆过滤器时,通过多个哈希函数将元素映射到位数组的多个位置,然后将这些位置的位设置为1。
查询元素:当要检查一个元素是否存在于布隆过滤器中时,通过相同的哈希函数将元素映射到位数组的相应位置,然后检查这些位置的位是否都为1。如果有任何一个位为0,那么可以确定元素不存在于数据集中。但如果所有位都是1,元素可能存在于数据集中,但也可能是误判。
本身redis支持布隆过滤器的数据结构,我们用代码简单实现了解一下:
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;
public class BloomFilterExample {
public static void main(String[] args) {
JedisPoolConfig poolConfig = new JedisPoolConfig();
JedisPool jedisPool = new JedisPool(poolConfig, "localhost", 6379);
try (Jedis jedis = jedisPool.getResource()) {
// 创建一个名为 "usernameFilter" 的布隆过滤器,需要指定预计的元素数量和期望的误差率
jedis.bfCreate("usernameFilter", 10000000, 0.01);
// 将用户名添加到布隆过滤器
jedis.bfAdd("usernameFilter", "alvin");
// 检查用户名是否已经存在
boolean exists = jedis.bfExists("usernameFilter", "alvin");
System.out.println("Username exists: " + exists);
}
}
}
在上述示例中,我们首先创建一个名为 “usernameFilter
” 的布隆过滤器,然后使用 bfAdd
将用户名添加到布隆过滤器中。最后,使用 bfExists
检查用户名是否已经存在。
优点:
节约内存空间,相比使用哈希表等数据结构,布隆过滤器通常需要更少的内存空间,因为它不存储实际元素,而只存储元素的哈希值。如果以 0.001 误差概
率存储 10
亿条记录,只需要 1.67 GB
内存,对比原来的20G
,大大的减少了。
高效的查找, 布隆过滤器可以在常数时间内(O(1))
快速查找一个元素是否存在于集合中,无需遍历整个集合。
缺点:
误判率存在:布隆过滤器在判断元素是否存在时,有一定的误判率。这意味着在某些情况下,它可能会错误地报告元素存在,但不会错误地报告元素不存在。
不能删除元素:布隆过滤器通常不支持从集合中删除元素,因为删除一个元素会影响其他元素的哈希值,增加了误判率。