目录
二叉树的遍历方法包括两种:深度优先遍历与广度优先遍历
下面分别介绍这两种遍历方法的具体实现。
? ? ? ? 即先往深走,遇到叶子节点再往回走。又包括前序、中序、后序遍历,可分别由递归法与迭代法实现。(PS:这里的三种顺序指的是中间节点的遍历顺序)
前序遍历:中左右
中序遍历:左中右
后序遍历:左右中
// Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
// 递归法
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec){
if(cur == nullptr) return;
vec.push_back(cur->val);
traversal(cur->left, vec);
traversal(cur->right, vec);
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int> preVec;
if(root==nullptr) return preVec;
traversal(root, preVec);
return preVec;
}
};
// 递归法
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec){
if(cur == nullptr) return;
traversal(cur->left, vec);
vec.push_back(cur->val);
traversal(cur->right, vec);
}
vector<int> inorderTraversal(TreeNode* root) {
vector<int> mid_vec;
if(root == nullptr) return mid_vec;
traversal(root, mid_vec);
return mid_vec;
}
};
// 递归法
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& vec){
if(cur == nullptr) return;
traversal(cur->left, vec);
traversal(cur->right, vec);
vec.push_back(cur->val);
}
vector<int> postorderTraversal(TreeNode* root) {
vector<int> post_vec;
if(root == nullptr) return post_vec;
traversal(root, post_vec);
return post_vec;
}
};
// 迭代法
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> preVec;
stack<TreeNode*> preStack;
if(root==nullptr) return preVec;
preStack.push(root);
while(!preStack.empty()){
TreeNode* cur = preStack.top();
preStack.pop();
preVec.push_back(cur->val); // 前序
// 中节点的右左入栈,左右出栈
if(cur->right) preStack.push(cur->right);
if(cur->left) preStack.push(cur->left);
}
return preVec;
}
};
// 迭代法
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> mid_vec;
stack<TreeNode*> mid_stack;
if(root == nullptr) return mid_vec;
TreeNode* cur = root;
while(cur || !mid_stack.empty()){
if(cur){
mid_stack.push(cur);
cur = cur->left;
}
else{
cur = mid_stack.top();
mid_stack.pop();
mid_vec.push_back(cur->val); // 中序
cur = cur->right;
}
}
return mid_vec;
}
};
// 迭代法
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> post_vec;
stack<TreeNode*> post_stack;
if(root == nullptr) return post_vec;
post_stack.push(root);
while(!post_stack.empty()){
TreeNode* cur = post_stack.top();
post_stack.pop();
post_vec.push_back(cur->val); //前序(后面逆转)
//左右入栈,右左出栈
if(cur->left) post_stack.push(cur->left);
if(cur->right) post_stack.push(cur->right);
}
// 中右左->左右中
reverse(post_vec.begin(),post_vec.end());
return post_vec;
}
};
// 迭代法(统一风格)
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> preVec;
stack<TreeNode*> preStack;
if(root) preStack.push(root);
while(!preStack.empty()){
TreeNode* cur = preStack.top();
if(cur){ // 入栈标记处理节点
preStack.pop();
if(cur->right) preStack.push(cur->right); //右入栈
if(cur->left) preStack.push(cur->left); //左入栈
preStack.push(cur); //中入栈
preStack.push(nullptr); //push空节点,标记处理节点
}
else{ // 遇空节点出栈处理
preStack.pop();
preVec.push_back(preStack.top()->val);
preStack.pop();
}
}
return preVec;
}
};
// 迭代法
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> mid_vec;
stack<TreeNode*> mid_stack;
if(root) mid_stack.push(root);
while(!mid_stack.empty()){
TreeNode* cur = mid_stack.top();
if(cur){ // 入栈标记处理节点
mid_stack.pop();
if(cur->right) mid_stack.push(cur->right);
mid_stack.push(cur);
mid_stack.push(nullptr);
if(cur->left) mid_stack.push(cur->left);
}
else{ // 遇空节点出栈处理
mid_stack.pop();
mid_vec.push_back(mid_stack.top()->val); // 中序
mid_stack.pop();
}
}
return mid_vec;
}
};
// 迭代法(统一风格)
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> post_vec;
stack<TreeNode*> post_stack;
if(root) post_stack.push(root);
while(!post_stack.empty()){
TreeNode* cur = post_stack.top();
if(cur){ // 入栈标记处理节点
post_stack.push(nullptr); // 中
if(cur->right) post_stack.push(cur->right); // 右
if(cur->left) post_stack.push(cur->left); // 左
}
else{ // 遇空节点出栈处理
post_stack.pop();
post_vec.push_back(post_stack.top()->val);
post_stack.pop();
}
}
return post_vec;
}
};
????????一层一层的去遍历。
? ? ? ??