You are given two integer arrays nums1 and nums2, sorted in non-decreasing order, and two integers m and n, representing the number of elements in nums1 and nums2 respectively.
Merge nums1 and nums2 into a single array sorted in non-decreasing order.
The final sorted array should not be returned by the function, but instead be stored inside the array nums1. To accommodate this, nums1 has a length of m + n, where the first m elements denote the elements that should be merged, and the last n elements are set to 0 and should be ignored. nums2 has a length of n.
Example 1:
Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
Output: [1,2,2,3,5,6]
Explanation: The arrays we are merging are [1,2,3] and [2,5,6].
The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1.
Example 2:
Input: nums1 = [1], m = 1, nums2 = [], n = 0
Output: [1]
Explanation: The arrays we are merging are [1] and [].
The result of the merge is [1].
Example 3:
Input: nums1 = [0], m = 0, nums2 = [1], n = 1
Output: [1]
Explanation: The arrays we are merging are [] and [1].
The result of the merge is [1].
Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1.
Constraints:
- nums1.length == m + n
- nums2.length == n
- 0 <= m, n <= 200
- 1 <= m + n <= 200
- -10^9 <= nums1[i], nums2[j] <= 10^9
Follow up: Can you come up with an algorithm that runs in O(m + n) time?
法一:
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
// voilent loop merge
// Time: O((m+n)log(m+n))
// Space: O(log(m+n))
for (int i = 0; i < n; i++) {
nums1[m + i] = nums2[i];
}
Arrays.sort(nums1);
}
}
法二:
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
// double pointer
// Time: O(m+n)
// Space: O(m+n)
int p1 = 0, p2 = 0, cur;
int[] newArr = new int[m + n];
while (p1 < m || p2 < n) {
if (p1 == m) {
cur = nums2[p2++];
} else if (p2 == n) {
cur = nums1[p1++];
} else if (nums1[p1] < nums2[p2]) {
cur = nums1[p1++];
} else {
cur = nums2[p2++];
}
newArr[p1 + p2 - 1] = cur;
}
for (int i = 0; i != m + n; ++i) {
nums1[i] = newArr[i];
}
}
}
法三:
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
// reverse double pointer
// Time: O(m+n)
// Space: O(1)
int p1 = m - 1, p2 = n - 1;
int cur;
int tail = m + n - 1;
while (p1 >= 0 || p2 >= 0) {
if (p1 == -1) {
cur = nums2[p2--];
} else if (p2 == -1) {
cur = nums1[p1--];
} else if (nums1[p1] > nums2[p2]) {
cur = nums1[p1--];
} else {
cur = nums2[p2--];
}
nums1[tail--] = cur;
}
}
}
?