决策树(Decision Trees)是一种基于树形结构进行决策的模型,广泛应用于分类和回归任务。它通过对数据集进行递归划分,构建一棵树,每个节点代表一个特征,每个分支代表一个决策规则,叶节点存储一个输出值。以下是决策树的基本原理和特点:
scikit-learn
)以下是一个简单的使用决策树进行分类的示例:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report
# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建决策树模型
model = DecisionTreeClassifier()
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
print(f'Accuracy: {accuracy}')
print(f'Classification Report:\n{report}')
这个示例演示了如何使用scikit-learn
库中的决策树分类器。你可以根据需要调整模型的参数,如max_depth(最大深度)等,以优化模型性能。更多详细信息和选项可以在scikit-learn的官方文档中找到。