计算机视觉技术-目标检测数据集

发布时间:2023年12月31日

目标检测领域没有像MNIST和Fashion-MNIST那样的小数据集。 为了快速测试目标检测模型,我们收集并标记了一个小型数据集。 首先,我们拍摄了一组香蕉的照片,并生成了1000张不同角度和大小的香蕉图像。 然后,我们在一些背景图片的随机位置上放一张香蕉的图像。 最后,我们在图片上为这些香蕉标记了边界框。

1、下载数据集

包含所有图像和CSV标签文件的香蕉检测数据集可以直接从互联网下载。

%matplotlib inline
import os
import pandas as pd
import torch
import torchvision
from d2l import torch as d2l

#@save
d2l.DATA_HUB['banana-detection'] = (
    d2l.DATA_URL + 'banana-detection.zip',
    '5de26c8fce5ccdea9f91267273464dc968d20d72')

2、读取数据集?

通过read_data_bananas函数,我们读取香蕉检测数据集。 该数据集包括一个的CSV文件,内含目标类别标签和位于左上角和右下角的真实边界框坐标。

#@save
def read_data_bananas(is_train=True):
    """读取香蕉检测数据集中的图像和标签"""
    data_dir = d2l.download_extract('banana-detection')
    csv_fname = os.path.join(data_dir, 'bananas_train' if is_train
                             else 'bananas_val', 'label.csv')
    csv_data = pd.read_csv(csv_fname)
    csv_data = csv_data.set_index('img_name')
    images, targets = [], []
    for img_name, target in csv_data.iterrows():
        images.append(torchvision.io.read_image(
            os.path.join(data_dir, 'bananas_train' if is_train else
                         'bananas_val', 'images', f'{img_name}')))
        # 这里的target包含(类别,左上角x,左上角y,右下角x,右下角y),
        # 其中所有图像都具有相同的香蕉类(索引为0)
        targets.append(list(target))
    return images, torch.tensor(targets).unsqueeze(1) / 256

通过使用read_data_bananas函数读取图像和标签,以下BananasDataset类别将允许我们创建一个自定义Dataset实例来加载香蕉检测数据集。

#@save
class BananasDataset(torch.utils.data.Dataset):
    """一个用于加载香蕉检测数据集的自定义数据集"""
    def __init__(self, is_train):
        self.features, self.labels = read_data_bananas(is_train)
        print('read ' + str(len(self.features)) + (f' training examples' if
              is_train else f' validation examples'))

    def __getitem__(self, idx):
        return (self.features[idx].float(), self.labels[idx])

    def __len__(self):
        return len(self.features)

最后,我们定义load_data_bananas函数,来为训练集和测试集返回两个数据加载器实例。对于测试集,无须按随机顺序读取它。

#@save
def load_data_bananas(batch_size):
    """加载香蕉检测数据集"""
    train_iter = torch.utils.data.DataLoader(BananasDataset(is_train=True),
                                             batch_size, shuffle=True)
    val_iter = torch.utils.data.DataLoader(BananasDataset(is_train=False),
                                           batch_size)
    return train_iter, val_iter

让我们读取一个小批量,并打印其中的图像和标签的形状。 图像的小批量的形状为(批量大小、通道数、高度、宽度),看起来很眼熟:它与我们之前图像分类任务中的相同。 标签的小批量的形状为(批量大小,m,5),其中m是数据集的任何图像中边界框可能出现的最大数量。

小批量计算虽然高效,但它要求每张图像含有相同数量的边界框,以便放在同一个批量中。 通常来说,图像可能拥有不同数量个边界框;因此,在达到m之前,边界框少于m的图像将被非法边界框填充。 这样,每个边界框的标签将被长度为5的数组表示。 数组中的第一个元素是边界框中对象的类别,其中-1表示用于填充的非法边界框。 数组的其余四个元素是边界框左上角和右下角的(xy)坐标值(值域在0~1之间)。 对于香蕉数据集而言,由于每张图像上只有一个边界框,因此m=1。

batch_size, edge_size = 32, 256
train_iter, _ = load_data_bananas(batch_size)
batch = next(iter(train_iter))
batch[0].shape, batch[1].shape

?(torch.Size([32, 3, 256, 256]), torch.Size([32, 1, 5]))

?让我们展示10幅带有真实边界框的图像。 我们可以看到在所有这些图像中香蕉的旋转角度、大小和位置都有所不同。 当然,这只是一个简单的人工数据集,实践中真实世界的数据集通常要复杂得多。

imgs = (batch[0][0:10].permute(0, 2, 3, 1)) / 255
axes = d2l.show_images(imgs, 2, 5, scale=2)
for ax, label in zip(axes, batch[1][0:10]):
    d2l.show_bboxes(ax, [label[0][1:5] * edge_size], colors=['w'])

3、演示?

?

文章来源:https://blog.csdn.net/weixin_43227851/article/details/135311960
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。