二分查找——OJ题(二)

发布时间:2023年12月26日

在这里插入图片描述


📘北尘_个人主页

🌎个人专栏:《Linux操作系统》《经典算法试题 》《C++》 《数据结构与算法》

??走在路上,不忘来时的初心


一、点名

1、题目讲解

在这里插入图片描述

2、算法原理

关于这道题中,时间复杂度为 O(N) 的解法有很多种,?且也是?较好想的,这?就不再赘述。
本题只讲解?个最优的?分法,来解决这个问题。
在这个升序的数组中,我们发现:
? 在第?个缺失位置的左边,数组内的元素都是与数组的下标相等的;
? 在第?个缺失位置的右边,数组内的元素与数组下标是不相等的。

3、代码实现

class Solution {
public:
    int takeAttendance(vector<int>& records) {
        int left=0,right=records.size()-1;
        while(left<right)
        {
            int mid=left+(right-left)/2;
            if(records[mid]==mid) left=mid+1;
            else right=mid;
        }
        return records[left]==left?left+1:left;
    }
};

二、搜索旋转排序数组中的最?值

1、题目讲解

在这里插入图片描述
在这里插入图片描述

2、算法原理

在这里插入图片描述
其中 C 点就是我们要求的点。
?分的本质:找到?个判断标准,使得查找区间能够?分为?。
通过图像我们可以发现, [A,B] 区间内的点都是严格?于 D 点的值的, C 点的值是严格?于 D 点的值的。但是当 [C,D] 区间只有?个元素的时候, C 点的值是可能等于 D 点的值的。
因此,初始化左右两个指针 left , right :
然后根据 mid 的落点,我们可以这样划分下?次查询的区间:
? 当 mid 在 [A,B] 区间的时候,也就是 mid 位置的值严格?于 D 点的值,下?次查询区间在 [mid + 1,right] 上;
? 当 mid 在 [C,D] 区间的时候,也就是 mid 位置的值严格?于等于 D 点的值,下次查询区间在 [left,mid] 上。
当区间?度变成 1 的时候,就是我们要找的结果。

3、代码实现

class Solution {
public:
    int findMin(vector<int>& nums) {
        int left=0,right=nums.size()-1,n=nums.size();
        while(left<right)
        {
            int mid=left+(right-left)/2;
            if(nums[mid]>nums[n-1]) left=mid+1;
            else right=mid;
        }
        return nums[left];

    }
};

三、寻找峰值

1、题目讲解

在这里插入图片描述

2、算法原理

寻找?段性:
任取?个点 i ,与下?个点 i + 1 ,会有如下两种情况:
? arr[i] > arr[i + 1] :此时「左侧区域」?定会存在?峰(因为最左侧是负?穷),那么我们可以去左侧去寻找结果;
? arr[i] < arr[i + 1] :此时「右侧区域」?定会存在?峰(因为最右侧是负?穷),那么我们可以去右侧去寻找结果。

3、代码实现

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        int left=0,right=nums.size()-1;
        while(left<right)
        {
            int mid=left+(right-left)/2;
            if(nums[mid]<nums[mid+1]) left=mid+1;
            else right=mid;
        }
        return left;
    }
};

四、山峰数组的峰顶

1、题目讲解

在这里插入图片描述
在这里插入图片描述

2、算法原理

  1. 分析峰顶位置的数据特点,以及?峰两旁的数据的特点:
    ? 峰顶数据特点: arr[i] > arr[i - 1] && arr[i] > arr[i + 1] ;
    ? 峰顶左边的数据特点: arr[i] > arr[i - 1] && arr[i] < arr[i + 1] ,也就是呈现上升趋势;
    ? 峰顶右边数据的特点: arr[i] < arr[i - 1] && arr[i] > arr[i + 1] ,也就是呈现下降趋势。
  2. 因此,根据 mid 位置的信息,我们可以分为下?三种情况:
    ? 如果 mid 位置呈现上升趋势,说明我们接下来要在 [mid + 1, right] 区间继续搜索;
    ? 如果 mid 位置呈现下降趋势,说明我们接下来要在 [left, mid - 1] 区间搜索;
    ? 如果 mid 位置就是?峰,直接返回结果。

3、代码实现

class Solution {
public:
    int peakIndexInMountainArray(vector<int>& arr) {
        int left=1,right=arr.size()-2;
        while(left<right)
        {
            int mid=left+(right-left+1)/2;
            if(arr[mid]>arr[mid-1]) left=mid;
            else right=mid-1;
        }
        return left;
    }
};

文章来源:https://blog.csdn.net/2301_78995005/article/details/135231088
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。