关于这道题中,时间复杂度为 O(N) 的解法有很多种,?且也是?较好想的,这?就不再赘述。
本题只讲解?个最优的?分法,来解决这个问题。
在这个升序的数组中,我们发现:
? 在第?个缺失位置的左边,数组内的元素都是与数组的下标相等的;
? 在第?个缺失位置的右边,数组内的元素与数组下标是不相等的。
class Solution {
public:
int takeAttendance(vector<int>& records) {
int left=0,right=records.size()-1;
while(left<right)
{
int mid=left+(right-left)/2;
if(records[mid]==mid) left=mid+1;
else right=mid;
}
return records[left]==left?left+1:left;
}
};
其中 C 点就是我们要求的点。
?分的本质:找到?个判断标准,使得查找区间能够?分为?。
通过图像我们可以发现, [A,B] 区间内的点都是严格?于 D 点的值的, C 点的值是严格?于 D 点的值的。但是当 [C,D] 区间只有?个元素的时候, C 点的值是可能等于 D 点的值的。
因此,初始化左右两个指针 left , right :
然后根据 mid 的落点,我们可以这样划分下?次查询的区间:
? 当 mid 在 [A,B] 区间的时候,也就是 mid 位置的值严格?于 D 点的值,下?次查询区间在 [mid + 1,right] 上;
? 当 mid 在 [C,D] 区间的时候,也就是 mid 位置的值严格?于等于 D 点的值,下次查询区间在 [left,mid] 上。
当区间?度变成 1 的时候,就是我们要找的结果。
class Solution {
public:
int findMin(vector<int>& nums) {
int left=0,right=nums.size()-1,n=nums.size();
while(left<right)
{
int mid=left+(right-left)/2;
if(nums[mid]>nums[n-1]) left=mid+1;
else right=mid;
}
return nums[left];
}
};
寻找?段性:
任取?个点 i ,与下?个点 i + 1 ,会有如下两种情况:
? arr[i] > arr[i + 1] :此时「左侧区域」?定会存在?峰(因为最左侧是负?穷),那么我们可以去左侧去寻找结果;
? arr[i] < arr[i + 1] :此时「右侧区域」?定会存在?峰(因为最右侧是负?穷),那么我们可以去右侧去寻找结果。
class Solution {
public:
int findPeakElement(vector<int>& nums) {
int left=0,right=nums.size()-1;
while(left<right)
{
int mid=left+(right-left)/2;
if(nums[mid]<nums[mid+1]) left=mid+1;
else right=mid;
}
return left;
}
};
class Solution {
public:
int peakIndexInMountainArray(vector<int>& arr) {
int left=1,right=arr.size()-2;
while(left<right)
{
int mid=left+(right-left+1)/2;
if(arr[mid]>arr[mid-1]) left=mid;
else right=mid-1;
}
return left;
}
};