[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-4(2) 刚体的速度与角速度

发布时间:2024年01月11日

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。

2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
.

食用方法
求解逻辑:速度与加速度都是在知道角速度与角加速度的前提下——旋转运动更重要
所求得的速度表达-需要考虑是否为刚体相对固定点!
旋转矩阵?转换矩阵?有什么意义和性质?——与角速度与角加速度的关系
务必自己推导全部公式,并理解每个符号的含义


4.2 速度传递

对于连续转动的坐标系而言,有:
{ [ Q M F ] = [ Q F 1 F ] [ Q F 2 F 1 ] ? [ Q M F n ? 1 ] ω ? ~ F = [ Q ˙ M F ] [ Q M F ] T ? ω ? ~ F = ( [ Q ˙ F 1 F ] [ Q F 2 F 1 ] ? [ Q M F n ? 1 ] + [ Q F 1 F ] [ Q ˙ F 2 F 1 ] ? [ Q M F n ? 1 ] + ? + [ Q F 1 F ] [ Q F 2 F 1 ] ? [ Q ˙ M F n ? 1 ] ) ? [ Q M F n ? 1 ] T ? [ Q F 2 F 1 ] T [ Q F 1 F ] T ? ω ? ~ F = [ Q ˙ F 1 F ] [ Q F 1 F ] T + [ Q F 1 F ] [ Q ˙ F 2 F 1 ] [ Q F 2 F 1 ] T [ Q F 1 F ] T + [ Q F 2 F ] [ Q ˙ F 3 F 2 ] [ Q F 3 F 2 ] T [ Q F 2 F ] T + ? [ Q F n ? 1 F ] [ Q ˙ M F n ? 1 ] [ Q M F n ? 1 ] T [ Q F n ? 1 F ] T ? ω ? ~ F = ω ? ~ F 1 F + [ Q F 1 F ] ω ? F 2 F 1 ~ + [ Q F 2 F ] ω ? F 3 F 2 ~ + ? + [ Q F n ? 1 F ] ω ? M F n ? 1 ~ ? ω ? F = ω ? F 1 F + [ Q F 1 F ] ω ? F 2 F 1 + ? + [ Q F n ? 1 F ] ω ? M F n ? 1 \begin{split} &\left\{ \begin{array}{c} \left[ Q_{\mathrm{M}}^{F} \right] =\left[ Q_{\mathrm{F}_1}^{F} \right] \left[ Q_{\mathrm{F}_2}^{F_1} \right] \cdots \left[ Q_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right]\\ \tilde{\vec{\omega}}^F=\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\\ \end{array} \right. \\ \Rightarrow \tilde{\vec{\omega}}^F&=\left( \left[ \dot{Q}_{\mathrm{F}_1}^{F} \right] \left[ Q_{\mathrm{F}_2}^{F_1} \right] \cdots \left[ Q_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] +\left[ Q_{\mathrm{F}_1}^{F} \right] \left[ \dot{Q}_{\mathrm{F}_2}^{F_1} \right] \cdots \left[ Q_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] +\cdots +\left[ Q_{\mathrm{F}_1}^{F} \right] \left[ Q_{\mathrm{F}_2}^{F_1} \right] \cdots \left[ \dot{Q}_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] \right) \cdot \left[ Q_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] ^{\mathrm{T}}\cdots \left[ Q_{\mathrm{F}_2}^{F_1} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_1}^{F} \right] ^{\mathrm{T}} \\ \Rightarrow \tilde{\vec{\omega}}^F&=\left[ \dot{Q}_{\mathrm{F}_1}^{F} \right] \left[ Q_{\mathrm{F}_1}^{F} \right] ^{\mathrm{T}}+\left[ Q_{\mathrm{F}_1}^{F} \right] \left[ \dot{Q}_{\mathrm{F}_2}^{F_1} \right] \left[ Q_{\mathrm{F}_2}^{F_1} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_1}^{F} \right] ^{\mathrm{T}}+\left[ Q_{\mathrm{F}_2}^{F} \right] \left[ \dot{Q}_{\mathrm{F}_3}^{F_2} \right] \left[ Q_{\mathrm{F}_3}^{F_2} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_2}^{F} \right] ^{\mathrm{T}}+\cdots \left[ Q_{\mathrm{F}_{\mathrm{n}-1}}^{F} \right] \left[ \dot{Q}_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] \left[ Q_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_{\mathrm{n}-1}}^{F} \right] ^{\mathrm{T}} \\ \Rightarrow \tilde{\vec{\omega}}^F&=\tilde{\vec{\omega}}_{\mathrm{F}_1}^{F}+\widetilde{\left[ Q_{\mathrm{F}_1}^{F} \right] \vec{\omega}_{\mathrm{F}_2}^{F_1}}+\widetilde{\left[ Q_{\mathrm{F}_2}^{F} \right] \vec{\omega}_{\mathrm{F}_3}^{F_2}}+\cdots +\widetilde{\left[ Q_{\mathrm{F}_{\mathrm{n}-1}}^{F} \right] \vec{\omega}_{\mathrm{M}}^{F_{\mathrm{n}-1}}} \\ \Rightarrow \vec{\omega}^F&=\vec{\omega}_{\mathrm{F}_1}^{F}+\left[ Q_{\mathrm{F}_1}^{F} \right] \vec{\omega}_{\mathrm{F}_2}^{F_1}+\cdots +\left[ Q_{\mathrm{F}_{\mathrm{n}-1}}^{F} \right] \vec{\omega}_{\mathrm{M}}^{F_{\mathrm{n}-1}} \end{split} ?ω ~F?ω ~F?ω ~F?ω F?? ? ??[QMF?]=[QF1?F?][QF2?F1??]?[QMFn?1??]ω ~F=[Q˙?MF?][QMF?]T?=([Q˙?F1?F?][QF2?F1??]?[QMFn?1??]+[QF1?F?][Q˙?F2?F1??]?[QMFn?1??]+?+[QF1?F?][QF2?F1??]?[Q˙?MFn?1??])?[QMFn?1??]T?[QF2?F1??]T[QF1?F?]T=[Q˙?F1?F?][QF1?F?]T+[QF1?F?][Q˙?F2?F1??][QF2?F1??]T[QF1?F?]T+[QF2?F?][Q˙?F3?F2??][QF3?F2??]T[QF2?F?]T+?[QFn?1?F?][Q˙?MFn?1??][QMFn?1??]T[QFn?1?F?]T=ω ~F1?F?+[QF1?F?]ω F2?F1?? ?+[QF2?F?]ω F3?F2?? ?+?+[QFn?1?F?]ω MFn?1?? ?=ω F1?F?+[QF1?F?]ω F2?F1??+?+[QFn?1?F?]ω MFn?1???
此时, ω ? F 1 F \vec{\omega}_{\mathrm{F}_1}^{F} ω F1?F?理解为,坐标系 { F 1 } \left\{ F_1 \right\} {F1?}所代表的刚体在坐标系 { F } \left\{ F \right\} {F}下的角速度参数。

4.3 运动刚体的加速度与角加速度

v ? P i M = ( ω ? ~ M ? [ Q M F ] T [ Q ˙ M F ] ) R ? P i M \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}=\left( \tilde{\vec{\omega}}^M-\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \right) \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} v Pi?M?=(ω ~M?[QMF?]T[Q˙?MF?])R Pi?M? 进一步求导,可计算出其运动刚体上点 P i P_i Pi?的加速度为:
v ? P i F = v ? M F + [ Q ˙ M F ] R ? P i M + [ Q M F ] R ? ˙ P i M = v ? M F + ω ? ~ F [ Q M F ] R ? P i M + [ Q M F ] v ? P i M ? a ? P i F = a ? M F + ( ω ? ~ ˙ F [ Q M F ] R ? P i M + ω ? ~ F [ Q ˙ M F ] R ? P i M + ω ? ~ F [ Q M F ] v ? P i M ) + ( [ Q ˙ M F ] v ? P i M + [ Q M F ] a ? P i M ) ? a ? P i F = a ? M F + ( α ? ~ F [ Q M F ] R ? P i M + ω ? ~ F ω ? ~ F [ Q M F ] R ? P i M + ω ? ~ F [ Q M F ] v ? P i M ) + ( ω ? ~ F [ Q M F ] v ? P i M + [ Q M F ] a ? P i M ) ? a ? P i F = a ? M F + α ? ~ F ( R ? P i M ) F + ω ? ~ F ω ? ~ F ( R ? P i M ) F + 2 ω ? ~ F ( v ? P i M ) F + ( a ? P i M ) F \begin{split} &\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{F}=\vec{v}_{\mathrm{M}}^{F}+\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{P}_{\mathrm{i}}}^{M}=\vec{v}_{\mathrm{M}}^{F}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) \\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \tilde{\vec{\alpha}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) \\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+2\tilde{\vec{\omega}}^F\left( \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\left( \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F \end{split} ?a Pi?F??a Pi?F??a Pi?F??v Pi?F?=v MF?+[Q˙?MF?]R Pi?M?+[QMF?]R ˙Pi?M?=v MF?+ω ~F[QMF?]R Pi?M?+[QMF?]v Pi?M?=a MF?+(ω ~˙F[QMF?]R Pi?M?+ω ~F[Q˙?MF?]R Pi?M?+ω ~F[QMF?]v Pi?M?)+([Q˙?MF?]v Pi?M?+[QMF?]a Pi?M?)=a MF?+(α ~F[QMF?]R Pi?M?+ω ~Fω ~F[QMF?]R Pi?M?+ω ~F[QMF?]v Pi?M?)+(ω ~F[QMF?]v Pi?M?+[QMF?]a Pi?M?)=a MF?+α ~F(R Pi?M?)F+ω ~Fω ~F(R Pi?M?)F+2ω ~F(v Pi?M?)F+(a Pi?M?)F?

P i P_i Pi?为运动刚体上固定一点时,则有:
a ? P i F = a ? M F + α ? ~ F ( R ? P i M ) F + ω ? ~ F ω ? ~ F ( R ? P i M ) F + 2 ω ? ~ F ( v ? P i M ↗ 0 ) F + ( a ? P i M ↗ 0 ) F = a ? M F + α ? ~ F ( R ? P i M ) F + ω ? ~ F ω ? ~ F ( R ? P i M ) F \begin{split} \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+2\tilde{\vec{\omega}}^F\left( {\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0} \right) ^F+\left( {\vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0} \right) ^F \\ &=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F \end{split} a Pi?F??=a MF?+α ~F(R Pi?M?)F+ω ~Fω ~F(R Pi?M?)F+2ω ~F(v Pi?M?0?)F+(a Pi?M?0?)F=a MF?+α ~F(R Pi?M?)F+ω ~Fω ~F(R Pi?M?)F?

4.3.1 欧拉角表示角加速度

ω ? F = [ cos ? β cos ? γ ? sin ? γ 0 cos ? β sin ? γ cos ? γ 0 ? sin ? β 0 1 ] [ α ˙ β ˙ γ ˙ ] \vec{\omega}^F=\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right] ω F= ?cosβcosγcosβsinγ?sinβ??sinγcosγ0?001? ? ?α˙β˙?γ˙?? ? 继续求导,可得:
ω ? F = [ cos ? β cos ? γ ? sin ? γ 0 cos ? β sin ? γ cos ? γ 0 ? sin ? β 0 1 ] [ α ˙ β ˙ γ ˙ ] ? α ? F = [ ? sin ? β cos ? γ ? cos ? β sin ? γ ? cos ? γ 0 cos ? β cos ? γ ? sin ? β sin ? γ ? sin ? γ 0 ? cos ? β 0 0 ] [ α ˙ β ˙ γ ˙ ] + [ cos ? β cos ? γ ? sin ? γ 0 cos ? β sin ? γ cos ? γ 0 ? sin ? β 0 1 ] [ α ¨ β ¨ γ ¨ ] \begin{split} \vec{\omega}^F=\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right] \\ \Rightarrow \vec{\alpha}^F=\left[ \begin{matrix} -\sin \beta \cos \gamma -\cos \beta \sin \gamma& -\cos \gamma& 0\\ \cos \beta \cos \gamma -\sin \beta \sin \gamma& -\sin \gamma& 0\\ -\cos \beta& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right] +\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \ddot{\alpha}\\ \ddot{\beta}\\ \ddot{\gamma}\\ \end{array} \right] \end{split} ω F= ?cosβcosγcosβsinγ?sinβ??sinγcosγ0?001? ? ?α˙β˙?γ˙?? ??α F= ??sinβcosγ?cosβsinγcosβcosγ?sinβsinγ?cosβ??cosγ?sinγ0?000? ? ?α˙β˙?γ˙?? ?+ ?cosβcosγcosβsinγ?sinβ??sinγcosγ0?001? ? ?α¨β¨?γ¨?? ??

4.3.2 待补充

4.3 刚体运动的旋量表达方式

文章来源:https://blog.csdn.net/LiongLoure/article/details/135524595
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。