本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。
2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
.
食用方法
求解逻辑:速度与加速度都是在知道角速度与角加速度的前提下——旋转运动更重要
所求得的速度表达-需要考虑是否为刚体相对固定点!
旋转矩阵?转换矩阵?有什么意义和性质?——与角速度与角加速度的关系
务必自己推导全部公式,并理解每个符号的含义
对于连续转动的坐标系而言,有:
{
[
Q
M
F
]
=
[
Q
F
1
F
]
[
Q
F
2
F
1
]
?
[
Q
M
F
n
?
1
]
ω
?
~
F
=
[
Q
˙
M
F
]
[
Q
M
F
]
T
?
ω
?
~
F
=
(
[
Q
˙
F
1
F
]
[
Q
F
2
F
1
]
?
[
Q
M
F
n
?
1
]
+
[
Q
F
1
F
]
[
Q
˙
F
2
F
1
]
?
[
Q
M
F
n
?
1
]
+
?
+
[
Q
F
1
F
]
[
Q
F
2
F
1
]
?
[
Q
˙
M
F
n
?
1
]
)
?
[
Q
M
F
n
?
1
]
T
?
[
Q
F
2
F
1
]
T
[
Q
F
1
F
]
T
?
ω
?
~
F
=
[
Q
˙
F
1
F
]
[
Q
F
1
F
]
T
+
[
Q
F
1
F
]
[
Q
˙
F
2
F
1
]
[
Q
F
2
F
1
]
T
[
Q
F
1
F
]
T
+
[
Q
F
2
F
]
[
Q
˙
F
3
F
2
]
[
Q
F
3
F
2
]
T
[
Q
F
2
F
]
T
+
?
[
Q
F
n
?
1
F
]
[
Q
˙
M
F
n
?
1
]
[
Q
M
F
n
?
1
]
T
[
Q
F
n
?
1
F
]
T
?
ω
?
~
F
=
ω
?
~
F
1
F
+
[
Q
F
1
F
]
ω
?
F
2
F
1
~
+
[
Q
F
2
F
]
ω
?
F
3
F
2
~
+
?
+
[
Q
F
n
?
1
F
]
ω
?
M
F
n
?
1
~
?
ω
?
F
=
ω
?
F
1
F
+
[
Q
F
1
F
]
ω
?
F
2
F
1
+
?
+
[
Q
F
n
?
1
F
]
ω
?
M
F
n
?
1
\begin{split} &\left\{ \begin{array}{c} \left[ Q_{\mathrm{M}}^{F} \right] =\left[ Q_{\mathrm{F}_1}^{F} \right] \left[ Q_{\mathrm{F}_2}^{F_1} \right] \cdots \left[ Q_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right]\\ \tilde{\vec{\omega}}^F=\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\\ \end{array} \right. \\ \Rightarrow \tilde{\vec{\omega}}^F&=\left( \left[ \dot{Q}_{\mathrm{F}_1}^{F} \right] \left[ Q_{\mathrm{F}_2}^{F_1} \right] \cdots \left[ Q_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] +\left[ Q_{\mathrm{F}_1}^{F} \right] \left[ \dot{Q}_{\mathrm{F}_2}^{F_1} \right] \cdots \left[ Q_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] +\cdots +\left[ Q_{\mathrm{F}_1}^{F} \right] \left[ Q_{\mathrm{F}_2}^{F_1} \right] \cdots \left[ \dot{Q}_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] \right) \cdot \left[ Q_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] ^{\mathrm{T}}\cdots \left[ Q_{\mathrm{F}_2}^{F_1} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_1}^{F} \right] ^{\mathrm{T}} \\ \Rightarrow \tilde{\vec{\omega}}^F&=\left[ \dot{Q}_{\mathrm{F}_1}^{F} \right] \left[ Q_{\mathrm{F}_1}^{F} \right] ^{\mathrm{T}}+\left[ Q_{\mathrm{F}_1}^{F} \right] \left[ \dot{Q}_{\mathrm{F}_2}^{F_1} \right] \left[ Q_{\mathrm{F}_2}^{F_1} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_1}^{F} \right] ^{\mathrm{T}}+\left[ Q_{\mathrm{F}_2}^{F} \right] \left[ \dot{Q}_{\mathrm{F}_3}^{F_2} \right] \left[ Q_{\mathrm{F}_3}^{F_2} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_2}^{F} \right] ^{\mathrm{T}}+\cdots \left[ Q_{\mathrm{F}_{\mathrm{n}-1}}^{F} \right] \left[ \dot{Q}_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] \left[ Q_{\mathrm{M}}^{F_{\mathrm{n}-1}} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{F}_{\mathrm{n}-1}}^{F} \right] ^{\mathrm{T}} \\ \Rightarrow \tilde{\vec{\omega}}^F&=\tilde{\vec{\omega}}_{\mathrm{F}_1}^{F}+\widetilde{\left[ Q_{\mathrm{F}_1}^{F} \right] \vec{\omega}_{\mathrm{F}_2}^{F_1}}+\widetilde{\left[ Q_{\mathrm{F}_2}^{F} \right] \vec{\omega}_{\mathrm{F}_3}^{F_2}}+\cdots +\widetilde{\left[ Q_{\mathrm{F}_{\mathrm{n}-1}}^{F} \right] \vec{\omega}_{\mathrm{M}}^{F_{\mathrm{n}-1}}} \\ \Rightarrow \vec{\omega}^F&=\vec{\omega}_{\mathrm{F}_1}^{F}+\left[ Q_{\mathrm{F}_1}^{F} \right] \vec{\omega}_{\mathrm{F}_2}^{F_1}+\cdots +\left[ Q_{\mathrm{F}_{\mathrm{n}-1}}^{F} \right] \vec{\omega}_{\mathrm{M}}^{F_{\mathrm{n}-1}} \end{split}
?ω~F?ω~F?ω~F?ωF??
?
??[QMF?]=[QF1?F?][QF2?F1??]?[QMFn?1??]ω~F=[Q˙?MF?][QMF?]T?=([Q˙?F1?F?][QF2?F1??]?[QMFn?1??]+[QF1?F?][Q˙?F2?F1??]?[QMFn?1??]+?+[QF1?F?][QF2?F1??]?[Q˙?MFn?1??])?[QMFn?1??]T?[QF2?F1??]T[QF1?F?]T=[Q˙?F1?F?][QF1?F?]T+[QF1?F?][Q˙?F2?F1??][QF2?F1??]T[QF1?F?]T+[QF2?F?][Q˙?F3?F2??][QF3?F2??]T[QF2?F?]T+?[QFn?1?F?][Q˙?MFn?1??][QMFn?1??]T[QFn?1?F?]T=ω~F1?F?+[QF1?F?]ωF2?F1??
?+[QF2?F?]ωF3?F2??
?+?+[QFn?1?F?]ωMFn?1??
?=ωF1?F?+[QF1?F?]ωF2?F1??+?+[QFn?1?F?]ωMFn?1???
此时,
ω
?
F
1
F
\vec{\omega}_{\mathrm{F}_1}^{F}
ωF1?F?理解为,坐标系
{
F
1
}
\left\{ F_1 \right\}
{F1?}所代表的刚体在坐标系
{
F
}
\left\{ F \right\}
{F}下的角速度参数。
对
v
?
P
i
M
=
(
ω
?
~
M
?
[
Q
M
F
]
T
[
Q
˙
M
F
]
)
R
?
P
i
M
\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}=\left( \tilde{\vec{\omega}}^M-\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \right) \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}
vPi?M?=(ω~M?[QMF?]T[Q˙?MF?])RPi?M? 进一步求导,可计算出其运动刚体上点
P
i
P_i
Pi?的加速度为:
v
?
P
i
F
=
v
?
M
F
+
[
Q
˙
M
F
]
R
?
P
i
M
+
[
Q
M
F
]
R
?
˙
P
i
M
=
v
?
M
F
+
ω
?
~
F
[
Q
M
F
]
R
?
P
i
M
+
[
Q
M
F
]
v
?
P
i
M
?
a
?
P
i
F
=
a
?
M
F
+
(
ω
?
~
˙
F
[
Q
M
F
]
R
?
P
i
M
+
ω
?
~
F
[
Q
˙
M
F
]
R
?
P
i
M
+
ω
?
~
F
[
Q
M
F
]
v
?
P
i
M
)
+
(
[
Q
˙
M
F
]
v
?
P
i
M
+
[
Q
M
F
]
a
?
P
i
M
)
?
a
?
P
i
F
=
a
?
M
F
+
(
α
?
~
F
[
Q
M
F
]
R
?
P
i
M
+
ω
?
~
F
ω
?
~
F
[
Q
M
F
]
R
?
P
i
M
+
ω
?
~
F
[
Q
M
F
]
v
?
P
i
M
)
+
(
ω
?
~
F
[
Q
M
F
]
v
?
P
i
M
+
[
Q
M
F
]
a
?
P
i
M
)
?
a
?
P
i
F
=
a
?
M
F
+
α
?
~
F
(
R
?
P
i
M
)
F
+
ω
?
~
F
ω
?
~
F
(
R
?
P
i
M
)
F
+
2
ω
?
~
F
(
v
?
P
i
M
)
F
+
(
a
?
P
i
M
)
F
\begin{split} &\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{F}=\vec{v}_{\mathrm{M}}^{F}+\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \dot{\vec{R}}_{\mathrm{P}_{\mathrm{i}}}^{M}=\vec{v}_{\mathrm{M}}^{F}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \dot{\tilde{\vec{\omega}}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \left[ \dot{Q}_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) \\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\left( \tilde{\vec{\alpha}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}+\tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) +\left( \tilde{\vec{\omega}}^F\left[ Q_{\mathrm{M}}^{F} \right] \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) \\ \Rightarrow \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+2\tilde{\vec{\omega}}^F\left( \vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\left( \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F \end{split}
?aPi?F??aPi?F??aPi?F??vPi?F?=vMF?+[Q˙?MF?]RPi?M?+[QMF?]R˙Pi?M?=vMF?+ω~F[QMF?]RPi?M?+[QMF?]vPi?M?=aMF?+(ω~˙F[QMF?]RPi?M?+ω~F[Q˙?MF?]RPi?M?+ω~F[QMF?]vPi?M?)+([Q˙?MF?]vPi?M?+[QMF?]aPi?M?)=aMF?+(α~F[QMF?]RPi?M?+ω~Fω~F[QMF?]RPi?M?+ω~F[QMF?]vPi?M?)+(ω~F[QMF?]vPi?M?+[QMF?]aPi?M?)=aMF?+α~F(RPi?M?)F+ω~Fω~F(RPi?M?)F+2ω~F(vPi?M?)F+(aPi?M?)F?
当点
P
i
P_i
Pi?为运动刚体上固定一点时,则有:
a
?
P
i
F
=
a
?
M
F
+
α
?
~
F
(
R
?
P
i
M
)
F
+
ω
?
~
F
ω
?
~
F
(
R
?
P
i
M
)
F
+
2
ω
?
~
F
(
v
?
P
i
M
↗
0
)
F
+
(
a
?
P
i
M
↗
0
)
F
=
a
?
M
F
+
α
?
~
F
(
R
?
P
i
M
)
F
+
ω
?
~
F
ω
?
~
F
(
R
?
P
i
M
)
F
\begin{split} \vec{a}_{\mathrm{P}_{\mathrm{i}}}^{F}&=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+2\tilde{\vec{\omega}}^F\left( {\vec{v}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0} \right) ^F+\left( {\vec{a}_{\mathrm{P}_{\mathrm{i}}}^{M}}_{\nearrow 0} \right) ^F \\ &=\vec{a}_{\mathrm{M}}^{F}+\tilde{\vec{\alpha}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F+\tilde{\vec{\omega}}^F\tilde{\vec{\omega}}^F\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^F \end{split}
aPi?F??=aMF?+α~F(RPi?M?)F+ω~Fω~F(RPi?M?)F+2ω~F(vPi?M?↗0?)F+(aPi?M?↗0?)F=aMF?+α~F(RPi?M?)F+ω~Fω~F(RPi?M?)F?
对
ω
?
F
=
[
cos
?
β
cos
?
γ
?
sin
?
γ
0
cos
?
β
sin
?
γ
cos
?
γ
0
?
sin
?
β
0
1
]
[
α
˙
β
˙
γ
˙
]
\vec{\omega}^F=\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right]
ωF=
?cosβcosγcosβsinγ?sinβ??sinγcosγ0?001?
?
?α˙β˙?γ˙??
? 继续求导,可得:
ω
?
F
=
[
cos
?
β
cos
?
γ
?
sin
?
γ
0
cos
?
β
sin
?
γ
cos
?
γ
0
?
sin
?
β
0
1
]
[
α
˙
β
˙
γ
˙
]
?
α
?
F
=
[
?
sin
?
β
cos
?
γ
?
cos
?
β
sin
?
γ
?
cos
?
γ
0
cos
?
β
cos
?
γ
?
sin
?
β
sin
?
γ
?
sin
?
γ
0
?
cos
?
β
0
0
]
[
α
˙
β
˙
γ
˙
]
+
[
cos
?
β
cos
?
γ
?
sin
?
γ
0
cos
?
β
sin
?
γ
cos
?
γ
0
?
sin
?
β
0
1
]
[
α
¨
β
¨
γ
¨
]
\begin{split} \vec{\omega}^F=\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right] \\ \Rightarrow \vec{\alpha}^F=\left[ \begin{matrix} -\sin \beta \cos \gamma -\cos \beta \sin \gamma& -\cos \gamma& 0\\ \cos \beta \cos \gamma -\sin \beta \sin \gamma& -\sin \gamma& 0\\ -\cos \beta& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} \dot{\alpha}\\ \dot{\beta}\\ \dot{\gamma}\\ \end{array} \right] +\left[ \begin{matrix} \cos \beta \cos \gamma& -\sin \gamma& 0\\ \cos \beta \sin \gamma& \cos \gamma& 0\\ -\sin \beta& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} \ddot{\alpha}\\ \ddot{\beta}\\ \ddot{\gamma}\\ \end{array} \right] \end{split}
ωF=
?cosβcosγcosβsinγ?sinβ??sinγcosγ0?001?
?
?α˙β˙?γ˙??
??αF=
??sinβcosγ?cosβsinγcosβcosγ?sinβsinγ?cosβ??cosγ?sinγ0?000?
?
?α˙β˙?γ˙??
?+
?cosβcosγcosβsinγ?sinβ??sinγcosγ0?001?
?
?α¨β¨?γ¨??
??