常见的几种迁移学习的方式的介绍 & Batch Normalization的原理介绍

发布时间:2024年01月04日

1.使用迁移学习的优势:(1).能够快速的训练出一个比较理想的结果;(2).在数据集很小的时候也能训练出不错的结果。

2.需要注意的点:在使用预训练模型参数时,需要尽量保持和之前这个模型训练时数据的预处理方式保持一致,否则可能达不到想要的效果。

3.常见的几种迁移学习的方式:(1)载入预训练模型后训练所有参数;(2)载入权重后只训练最后几层全连接层的参数;(3)载入模型后,在原网络的基础上再加一层全连接层,只训练加的这个全连接层。这3种方式中,第2种是对设备要求最低,也是训练最快的,但是第一种方法能达到的的效果是最好的。

4. Batch Normalization:它是google团队在2015年论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》提出的。通过该方法能够加速网络的收敛并提升准确率。一般来说,在图像预处理时,会采用标准化处理,但是随着网络的不断深入,feature map便不再满足均值为0,方差为1了,这时候就需要使用batch normalization了。这个方法第一次火是在resnet模型中运用,具体的原理建议移步一位大佬的博客:Batch normalization原理讲解
?

文章来源:https://blog.csdn.net/qq_43449643/article/details/135388501
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。