RT-DETR模型导出与推理

发布时间:2023年12月26日

1.准备工作

RT-DETR模型训练可参考:http://t.csdnimg.cn/Fsph5

模型导出与模型推理需要安装onnx库和onnxruntime库

可通过以下命令安装:

pip install onnx -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simple

2.onnx模型导出

首先找到export_onnx.py文件,该文件位于RT-DETR/RT-DETR-main/rtdetr_pytorch/tools/export_onnx.py

然后修改config与resume参数,使其路径为你的具体路径。

其中resume参数为训练生成的pth权重文件路径。

"""by lyuwenyu
"""

import os 
import sys
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), '..'))

import argparse
import numpy as np 

from src.core import YAMLConfig

import torch
import torch.nn as nn 


def main(args, ):
    """main
    """
    cfg = YAMLConfig(args.config, resume=args.resume)

    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu') 
        if 'ema' in checkpoint:
            state = checkpoint['ema']['module']
        else:
            state = checkpoint['model']
    else:
        raise AttributeError('only support resume to load model.state_dict by now.')

    # NOTE load train mode state -> convert to deploy mode
    cfg.model.load_state_dict(state)

    class Model(nn.Module):
        def __init__(self, ) -> None:
            super().__init__()
            self.model = cfg.model.deploy()
            self.postprocessor = cfg.postprocessor.deploy()
            print(self.postprocessor.deploy_mode)
            
        def forward(self, images, orig_target_sizes):
            outputs = self.model(images)
            return self.postprocessor(outputs, orig_target_sizes)
    

    model = Model()

    dynamic_axes = {
        'images': {0: 'N', },
        'orig_target_sizes': {0: 'N'}
    }

    data = torch.rand(1, 3, 640, 640)
    size = torch.tensor([[640, 640]])

    torch.onnx.export(
        model, 
        (data, size), 
        args.file_name,
        input_names=['images', 'orig_target_sizes'],
        output_names=['labels', 'boxes', 'scores'],
        dynamic_axes=dynamic_axes,
        opset_version=16, 
        verbose=False
    )


    if args.check:
        import onnx
        onnx_model = onnx.load(args.file_name)
        onnx.checker.check_model(onnx_model)
        print('Check export onnx model done...')


    if args.simplify:
        import onnxsim
        dynamic = True 
        input_shapes = {'images': data.shape, 'orig_target_sizes': size.shape} if dynamic else None
        onnx_model_simplify, check = onnxsim.simplify(args.file_name, input_shapes=input_shapes, dynamic_input_shape=dynamic)
        onnx.save(onnx_model_simplify, args.file_name)
        print(f'Simplify onnx model {check}...')


    # import onnxruntime as ort 
    # from PIL import Image, ImageDraw
    # from torchvision.transforms import ToTensor

    # # print(onnx.helper.printable_graph(mm.graph))

    # im = Image.open('./000000014439.jpg').convert('RGB')
    # im = im.resize((640, 640))
    # im_data = ToTensor()(im)[None]
    # print(im_data.shape)

    # sess = ort.InferenceSession(args.file_name)
    # output = sess.run(
    #     # output_names=['labels', 'boxes', 'scores'],
    #     output_names=None,
    #     input_feed={'images': im_data.data.numpy(), "orig_target_sizes": size.data.numpy()}
    # )

    # # print(type(output))
    # # print([out.shape for out in output])

    # labels, boxes, scores = output

    # draw = ImageDraw.Draw(im)
    # thrh = 0.6

    # for i in range(im_data.shape[0]):

    #     scr = scores[i]
    #     lab = labels[i][scr > thrh]
    #     box = boxes[i][scr > thrh]

    #     print(i, sum(scr > thrh))

    #     for b in box:
    #         draw.rectangle(list(b), outline='red',)
    #         draw.text((b[0], b[1]), text=str(lab[i]), fill='blue', )

    # im.save('test.jpg')



if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('--config', '-c', type=str,default = "/home/guan/RT-DETR/RT-DETR-main/rtdetr_pytorch/configs/rtdetr/rtdetr_r18vd_6x_coco.yml" )
    parser.add_argument('--resume', '-r', type=str,default = "/home/guan/RT-DETR/RT-DETR-main/rtdetr_pytorch/tools/output/rtdetr_r18vd_6x_coco/checkpoint0012.pth" )
    parser.add_argument('--file-name', '-f', type=str, default='model.onnx')
    parser.add_argument('--check',  action='store_true', default=False,)
    parser.add_argument('--simplify',  action='store_true', default=False,)

    args = parser.parse_args()

    main(args)

修改完毕后,即可运行export_onnx.py,生成的onnx文件位于该py文件的同级目录

3.推理

在tools文件夹下创建mypredict.py

mypredict.py的代码如下:

你需要修改img_path ,使其为你推理所需的图像路径。

img.save()中的路径修改为你的推理结果保存的路径。

-------2023.12.21更新--------

按照你的数据集中的类别修改classes

import torch
import onnxruntime as ort 
from PIL import Image, ImageDraw
from torchvision.transforms import ToTensor

if __name__ == "__main__":
    ##################
    classes = ['','LicensePlate']
    ##################
    # print(onnx.helper.printable_graph(mm.graph))
    #############
    img_path = "/home/guan/RT-DETR/RT-DETR-main/rtdetr_pytorch/tools/input/IMG_8669.jpg"
    #############
    im = Image.open(img_path).convert('RGB')
    im = im.resize((640, 640))
    im_data = ToTensor()(im)[None]
    print(im_data.shape)

    size = torch.tensor([[640, 640]])
    sess = ort.InferenceSession("model.onnx")
    output = sess.run(
        # output_names=['labels', 'boxes', 'scores'],
        output_names=None,
        input_feed={'images': im_data.data.numpy(), "orig_target_sizes": size.data.numpy()}
    )

    # print(type(output))
    # print([out.shape for out in output])

    labels, boxes, scores = output

    draw = ImageDraw.Draw(im)
    thrh = 0.6

    for i in range(im_data.shape[0]):

        scr = scores[i]
        lab = labels[i][scr > thrh]
        box = boxes[i][scr > thrh]

        print(i, sum(scr > thrh))
        #print(lab)
        print(f'box:{box}')
        for l, b in zip(lab, box):
            draw.rectangle(list(b), outline='red',)
            print(l.item())
            
            draw.text((b[0], b[1] - 10), text=str(classes[l.item()]), fill='blue', )
    #############
    im.save('/home/guan/RT-DETR/RT-DETR-main/rtdetr_pytorch/tools/output/predict/res.jpg')
    #############

运行mypredict.py,得到推理结果。

文章来源:https://blog.csdn.net/weixin_53895623/article/details/135128497
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。