快慢指针-Floyd判圈算法

发布时间:2024年01月15日

对于环形链表是否存在环的做法,普通算法可以通过额外Hash数组来存储链表元素,直到Hash数组中出现重复元素。时间复杂度O(n),空间复杂度O(n)

Floyd判圈算法通过利用快慢指针的移动来实现,时间复杂度O(n),空间复杂度O(1)

一、环形链表

这个不需要过过多的介绍,环形链表就是存在一个节点被2个节点指向,形成了一个闭环。

需要注意的是,一个节点可以被两个节点指向,但是不可能一个节点指向多个节点,所以不会出现一下情况:

二、算法结论

存在不同速度的快慢指针(slow & fast),慢指针每周期移动1个节点,快指针每周期移动2节点

1、因为快指针比慢指针速度快,所以如果链表中不存在环时,快慢指针永远不得相遇,直到Fast移动到尾部结束,时间复杂度O(n),因为Fast指针速度是Slow指针两倍,所以当Fast指针到达尾部时,Slow指针走了一半,即S指向中间值。

2、如果存在环,Fast先进入到环内,并开始做绕环移动,Slow和Fast在环内经过n次移动后,必然会相遇

3、快慢指针在环内第一次相遇后,将其中一个指针重置到head位,当他们再次相遇后指向的节点为入环节点

三、算法证明

1、每次循环,为什么快慢指针一定要快1步,是否可以前进更多?(Slow前进1格,Fast前进2格)

这是因为快慢指针如果相距更多的步,可能存在环内永远不会相遇的情况,比如慢指针前进1格,快指针前进4格时,如下

因为环节点数据量为3个,所以对于Fast指针来说每次循环等于前进1格,而慢指针也前进1格,所以两者永远不能相遇。

因此想要快慢指针在环内能必然或者更快的相遇,那需要他们每次循环后,距离-1,直到相遇。F指针比S指针快1步,可以更好的保障其在环境一定能够相遇,或者更早的相遇。

2、为什么快慢指针在环内一定会相遇?

假如快慢指针此时都在环内,他们相距距离为N,因为环是无限循环的,假设次数S指针在F指针前,即S-F=N

?因为F指针比S指针快1步,所以进行1次移动后:

S+1-(F+2) = S-F -1 = N-1 ,即执行一次后两者的距离-1,因此在n次循环后,必然会出现相遇。

此时如果将设F指针速度为vf, 慢指针速度为vs,同时要确保一定相遇满足N-1,则:

S+vs -(F +vf) = N-1? ?

? --> S-F + vs-vf = n-1??

? --> vs - vf = 1,即相差1步

同时N为两者的距离,肯定是小于环的长度的,所以在S指针进环后,第1圈内一定会相遇

结论:

首先F指针每次比S指针快1步,可以确保在环中一定可以相遇,如果快更多,则不能保证或需要更多的循环。

3、入口节点结论证明

上面已经证明了F\S在环中一定是能够相遇的,且S进环后,第一圈一定会相遇,那么假设F\S

在P点相遇

因为F比S快1步,所以F在环内已经跑了1圈了

因此F行驶距离:AC + 2CP + PC

S行驶距离:AC + CP

因为F速度为S的两倍,因此?AC + 2CP + PC = 2(AC + CP)得出 AC = PC

即:在第一次相遇时,PC和AC的长度是一样的,因此此时将任意节点重置到A位,并两者均以相同的速度前进,必然会在C点相遇,因此C点为入口点。

4、原理理解了算法就比较简单了

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public int hasCycle(ListNode head) {
        if(head == null){
           return -1;
        }
         ListNode fast = head;
         ListNode slow = head;
         // 第一次相遇
         while(true){
             if(slow.next == null  || fast.next == null ){
                return false;
             }
             fast = fast.next.next;
             slow = slow.next;
             if(fast == slow){
                  break;
             }
             
         } 
         // 第二次相遇 
         while(fast!=slow){
             fast = fast.next;
             slow = slow.next;
             if(fast == slow){
                  return fast ;
             }
             
         } 
    }
}

文章来源:https://blog.csdn.net/qq_31142237/article/details/135605694
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。