Day22 112路径总和 113路径总和II 106中后构造二叉树/中前构造二叉树 654最大二叉树

发布时间:2024年01月03日

给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。

递归:

可以采用深度优先的递归方式,前中后序都可以(因为中节点没有处理逻辑)。首先确定参数和返回值。参数需要二叉树的根节点,以及一个计数器用来判断什么时候等于target。那么返回值呢,本题是要找到其中一条合适的路径,处理递归返回值,因为遇到符合条件的路径就要及时返回,反之下一道题就不需要返回值。

? ? ? ? ?本题代码如下:

class Solution {
private:
    //注意函数的返回值类型,可以用布尔类型表示
    bool traversal(TreeNode* cur, int count) {
    //终止条件:因为不断累加然后判断是否等于目标值比较麻烦,所以我们用相减的方法,让count的初始为目标和,然后每次减去遍历路径节点上的数值。
        if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
        if (!cur->left && !cur->right) return false; // 遇到叶子节点,但是还没找到,直接返回(回溯)
    
        //后面是单层递归的逻辑,因为终止条件是判断叶子节点,所以递归的过程就不要让空节点进入递归了,记住单层的逻辑和终止条件也有关。
        if (cur->left) { // 左(空节点不遍历)
            count -= cur->left->val; // 递归,处理节点;
            if (traversal(cur->left, count)) return true;(返回true说明找到了合适的路径,准备回溯)
            count += cur->left->val; // 回溯,撤销处理结果
        }
        if (cur->right) { // 右
            count -= cur->right->val; // 递归,处理节点;
            if (traversal(cur->right, count)) return true;
            count += cur->right->val; // 回溯,撤销处理结果
        }
        return false;
    }

public:
    bool hasPathSum(TreeNode* root, int sum) {
        if (root == NULL) return false;
        return traversal(root, sum - root->val);
    }
};

? ? ? ? ?当然,代码也可以写成精简版,只是不太能体会到递归的逻辑:

class Solution {
public:
    bool hasPathSum(TreeNode* root, int sum) {
        if (!root) return false; //遍历到空节点直接返回false。
        //这里如果最后一个结点的值等于此时的sum值,就说明刚好满足target,返回true。
        if (!root->left && !root->right && sum == root->val) {
            return true;
        }
        return hasPathSum(root->left, sum - root->val) || hasPathSum(root->right, sum - root->val);
    }
};

迭代法:

迭代法采用的是用栈模拟递归,当然也是要用回溯的,此时栈里一个元素不仅要记录节点指针,还要记录从头结点到该节点的路径数值总和,所以我们用pair这种结构来存放栈里的每个元素,first为treenode*,second为pair。代码如下:

class solution {

public:
    bool haspathsum(TreeNode* root, int sum) {
        if (root == null) return false;
        // 此时栈里要放的是pair<节点指针,路径数值>
        stack<pair<TreeNode*, int>> st;
        st.push(pair<TreeNode*, int>(root, root->val));
        while (!st.empty()) {
            pair<TreeNode*, int> node = st.top();
            st.pop();
            // 如果该节点是叶子节点了,同时该节点的路径数值等于sum,那么就返回true
            if (!node.first->left && !node.first->right && sum == node.second) return true;

            // 右节点,压进去一个节点的时候,将该节点的路径数值也记录下来
            if (node.first->right) {
                st.push(pair<TreeNode*, int>(node.first->right, node.second + node.first->right->val));
            }

            // 左节点,压进去一个节点的时候,将该节点的路径数值也记录下来
            if (node.first->left) {
                st.push(pair<TreeNode*, int>(node.first->left, node.second + node.first->left->val));
            }
        }
        return false;
    }
};

113.路径总和II

给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。

? ? ? ? 这个就是刚才说的找到所有路径,所以递归函数不需要返回值,和上面代码类似:

class solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    // 递归函数不需要返回值,因为我们要遍历整个树
    void traversal(TreeNode* cur, int count) {
        if (!cur->left && !cur->right && count == 0) { // 遇到了叶子节点且找到了和为sum的路径
            result.push_back(path);
            return;
        }

        if (!cur->left && !cur->right) return ; // 遇到叶子节点而没有找到合适的边,直接返回

        if (cur->left) { // 左 (空节点不遍历)
            path.push_back(cur->left->val);
            count -= cur->left->val;
            traversal(cur->left, count);    // 递归
            count += cur->left->val;        // 回溯
            path.pop_back();                // 回溯
        }
        if (cur->right) { // 右 (空节点不遍历)
            path.push_back(cur->right->val);
            count -= cur->right->val;
            traversal(cur->right, count);   // 递归
            count += cur->right->val;       // 回溯
            path.pop_back();                // 回溯
        }
        return ;
    }

public:
    vector<vector<int>> pathSum(TreeNode* root, int sum) {
        result.clear();
        path.clear();
        if (root == NULL) return result;
        path.push_back(root->val); // 把根节点放进路径
        traversal(root, sum - root->val);
        return result;
    }
};

? ? ? ? 简化版本:注意这里的count计算过程可以在函数里回溯,但是path这个过程不可以

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    // 递归函数不需要返回值,因为我们要遍历整个树
    void traversal(TreeNode* cur, int count) {
        if (!cur->left && !cur->right && count == 0) { // 遇到了叶子节点且找到了和为sum的路径
            result.push_back(path);
            return;
        }

        if (!cur->left && !cur->right) return ; // 遇到叶子节点而没有找到合适的边,直接返回

        if (cur->left) { // 左 (空节点不遍历)
            path.push_back(cur->left->val);
            traversal(cur -> left, count - cur->left->val); 
            path.pop_back();   // 回溯
        }
        if (cur->right) { // 右 (空节点不遍历)
            path.push_back(cur->right->val);
            traversal(cur -> right, count - cur->right->val);
            path.pop_back();   // 回溯
        }
        return ;
    }

public:
    vector<vector<int>> pathSum(TreeNode* root, int sum) {
        result.clear();
        path.clear();
        if (root == NULL) return result;
        path.push_back(root->val); // 把根节点放进路径
        traversal(root, sum - root->val);
        return result;
    }
};

? ? ? ? 通过这两道题,我们可以知道函数什么时候需要返回值,而什么时候不需要。并且单层递归逻辑里面的判断条件还要受到终止条件的影响,感受一下搜索整棵树和搜索某一路径的区别

  • 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)
  • 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (这种情况我们在236. 二叉树的最近公共祖先?(opens new window)中介绍)
  • 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。

106 从中序与后序遍历序列构造二叉树

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

首先写出一个代码框架:

TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {

    // 第一步
    if (postorder.size() == 0) return NULL;

    // 第二步:后序遍历数组最后一个元素,就是当前的中间节点
    int rootValue = postorder[postorder.size() - 1];
    TreeNode* root = new TreeNode(rootValue);

    // 叶子节点
    if (postorder.size() == 1) return root;

    // 第三步:找切割点
    int delimiterIndex;
    for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
        if (inorder[delimiterIndex] == rootValue) break;
    }

    // 第四步:切割中序数组,得到 中序左数组和中序右数组
    // 第五步:切割后序数组,得到 后序左数组和后序右数组

    // 第六步
    root->left = traversal(中序左数组, 后序左数组);
    root->right = traversal(中序右数组, 后序右数组);

    return root;
}

?接下来是完整的代码:

class Solution {
private:
    TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
        if (postorder.size() == 0) return NULL;

        // 后序遍历数组最后一个元素,就是当前的中间节点
        int rootValue = postorder[postorder.size() - 1];
        TreeNode* root = new TreeNode(rootValue);

        // 叶子节点
        if (postorder.size() == 1) return root;

        // 找到中序遍历的切割点
        int delimiterIndex;
        for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }

        // 切割中序数组
        // 左闭右开区间:[0, delimiterIndex)
        vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
        // [delimiterIndex + 1, end)
        vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

        // postorder 舍弃末尾元素
        postorder.resize(postorder.size() - 1);

        // 切割后序数组
        // 依然左闭右开,注意这里使用了左中序数组大小作为切割点
        // [0, leftInorder.size)
        vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
        // [leftInorder.size(), end)
        vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

        root->left = traversal(leftInorder, leftPostorder);
        root->right = traversal(rightInorder, rightPostorder);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        return traversal(inorder, postorder);
    }
};

因为中间用了vector来处理,所以时间和空间都耗费过大,为了简化这种情况,我们推荐用下标的方法:

class Solution {
private:
    // 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)
    TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
        if (postorderBegin == postorderEnd) return NULL;

        int rootValue = postorder[postorderEnd - 1];
        TreeNode* root = new TreeNode(rootValue);

        if (postorderEnd - postorderBegin == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;

        // 切割后序数组
        // 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
        int leftPostorderBegin =  postorderBegin;
        int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
        // 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
        int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
        int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了

        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        // 左闭右开的原则
        return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
    }
};

? ? ? ? ?类似的,我们可以做一下105这道前序加中序的题目:

class Solution {
private:
        TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
        if (preorderBegin == preorderEnd) return NULL;

        int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
        TreeNode* root = new TreeNode(rootValue);

        if (preorderEnd - preorderBegin == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;

        // 切割前序数组
        // 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
        int leftPreorderBegin =  preorderBegin + 1;
        int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
        // 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
        int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
        int rightPreorderEnd = preorderEnd;

        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);

        return root;
    }

public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if (inorder.size() == 0 || preorder.size() == 0) return NULL;

        // 参数坚持左闭右开的原则
        return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());
    }
};

?注意:前序和后序不能确定一个二叉树,其他情况都可以。

654.最大二叉树

给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:

  • 二叉树的根是数组中的最大元素。
  • 左子树是通过数组中最大值左边部分构造出的最大二叉树。
  • 右子树是通过数组中最大值右边部分构造出的最大二叉树。

通过给定的数组构建最大二叉树,并且输出这个树的根节点。

? ? ? ? 构造树一般采用前序遍历,因为要先构造中间节点,然后递归构造左子树和右子树。

class Solution {
public:
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        TreeNode* node = new TreeNode(0);
        //终止条件:遇到叶子节点
        if (nums.size() == 1) {
            node->val = nums[0];
            return node;
        }
        // 找到数组中最大的值和对应的下标,最大的值用来构造结点,下标用来分割
        int maxValue = 0;
        int maxValueIndex = 0;
        for (int i = 0; i < nums.size(); i++) {
            if (nums[i] > maxValue) {
                maxValue = nums[i];
                maxValueIndex = i;
            }
        }
        node->val = maxValue;
        // 最大值所在的下标左区间 构造左子树 保证左区间至少有一个值
        if (maxValueIndex > 0) {
            vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
            node->left = constructMaximumBinaryTree(newVec);
        }
        // 最大值所在的下标右区间 构造右子树 保证右区间至少有一个值
        if (maxValueIndex < (nums.size() - 1)) {
            vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
            node->right = constructMaximumBinaryTree(newVec);
        }
        return node;
    }
};
//简化版本,直接在原数组上操作
class Solution {
private:
    // 在左闭右开区间[left, right),构造二叉树
    TreeNode* traversal(vector<int>& nums, int left, int right) {
        if (left >= right) return nullptr;

        // 分割点下标:maxValueIndex
        int maxValueIndex = left;
        for (int i = left + 1; i < right; ++i) {
            if (nums[i] > nums[maxValueIndex]) maxValueIndex = i;
        }

        TreeNode* root = new TreeNode(nums[maxValueIndex]);

        // 左闭右开:[left, maxValueIndex)
        root->left = traversal(nums, left, maxValueIndex);

        // 左闭右开:[maxValueIndex + 1, right)
        root->right = traversal(nums, maxValueIndex + 1, right);

        return root;
    }
public:
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        return traversal(nums, 0, nums.size());
    }
};

第一版终止条件,是遇到叶子节点就终止,因为空节点不会进入递归。

第二版相应的终止条件,是遇到空节点,也就是数组区间为0,就终止了。

一般情况来说:如果让空节点(空指针)进入递归,就不加if,如果不让空节点进入递归,就加if限制一下, 终止条件也会相应的调整。

文章来源:https://blog.csdn.net/2303_77739929/article/details/135372947
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。