分类预测 | Matlab实现KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测

发布时间:2024年01月18日

分类预测 | Matlab实现KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测

分类效果

在这里插入图片描述

在这里插入图片描述

基本描述

KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测(可用于故障诊断等方面)MATLAB代码
?含SVM、BWO-SVM、EBWO-SVM、KPCA-EBWO-SVM,四个模型的对比
?两个改进策略:
准对立学习策略(QOBL)可提高收敛率,促进算法寻优。旋风觅食策略(CFS)用于加强传统BWO的开发阶段,使种群围绕最佳解决方案呈螺旋方向移动
?可出分类效果图,迭代优化图,混淆矩阵
?代码中文注释清晰,质量极高
?赠送数据集,可以直接运行源程序。

程序设计

  • 完整程序和数据私信博主回复Matlab实现KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测
%%  参数设置
 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

文章来源:https://blog.csdn.net/kjm13182345320/article/details/135663226
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。