根据前文目标检测-Two Stage-YOLOv1可以看出YOLOv1的主要缺点是:
SSD(Single Shot MultiBox Detector)针对上述缺点做了改进
提示:以下是本篇文章正文内容,下面内容可供参考
ps:产生共计 3 8 2 × 4 + 1 9 2 × 6 + 1 0 2 × 6 + 5 2 × 6 + 3 2 × 4 + 1 2 × 4 = 8732 38^2×4+19^2×6+10^2×6+5^2×6+3^2×4+1^2×4 = 8732 382×4+192×6+102×6+52×6+32×4+12×4=8732 个anchor
SSD中anchor的大小尺寸(scale)并不是按照特征图的大小统一缩放对应的,而是手动设置了一个线性插值变换,使浅层使用较小的scale,往深层逐渐增大scale。由于随着层次加深感受野逐渐增大,这意味着SSD使用感受野小的feature map检测小目标(较小的scale),使用感受野大的feature map检测更大目标(较大的scale)。
SSD结合了YOLO中的回归思想和Faster R-CNN中的anchor机制,使用全图各个位置的多尺度区域特征进行回归,既保持了YOLO速度快的特性,也保证了窗口预测的跟Faster R-CNN一样比较精准。SSD在VOC2007上mAP可以达到72.1%,速度在GPU上达到58帧每秒。
但是,和Faster RCNN使用SPP不限制输入大小相比,到目前为止,One Stage算法都是缩放到固定大小,可能会使图片变形失真。