前面我已经给大家分享了两篇关于递归、搜索和回溯相关的问题,但是前面两篇只涉及到了递归,搜索和回溯基本还没涉及到,大家先别着急,后面的文章会为大家分享关于搜索和回溯相关的知识和题目。今天这篇文章主要涉及到的就是关于在递归过程中的剪枝问题。
二叉树剪枝是指通过剪去二叉树中某些子树来提高其质量的过程。具体来说,二叉树剪枝可以包括以下几种情况:
通过二叉树剪枝,可以提高二叉树的性能和效率,使得它更加适合于解决实际问题。
其实二叉树剪枝不困难,只需要我们在递归的过程中做出适当的判断就可以到达剪枝的目的。
https://leetcode.cn/problems/binary-tree-pruning/
给你二叉树的根结点 root ,此外树的每个结点的值要么是 0 ,要么是 1 。
返回移除了所有不包含 1 的子树的原二叉树。
节点 node 的子树为 node 本身加上所有 node 的后代。
示例 1:
输入:root = [1,null,0,0,1]
输出:[1,null,0,null,1]
解释:
只有红色节点满足条件“所有不包含 1 的子树”。 右图为返回的答案。
示例 2:
输入:root = [1,0,1,0,0,0,1]
输出:[1,null,1,null,1]
示例 3:
输入:root = [1,1,0,1,1,0,1,0]
输出:[1,1,0,1,1,null,1]
提示:
树中节点的数目在范围 [1, 200] 内
Node.val 为 0 或 1
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode pruneTree(TreeNode root) {
}
}
想要做好递归,我们需要以宏观的视角来解决微观问题。首先先来判断给我们的节点是否是null,如果是则直接返回null,不是,则将根节点的左子树和右子树分别交给函数,通过这个函数,我们不需要知道这个函数的具体细节,我们只需要相信他一定能够帮助我们完成剪枝操作。当根节点的左右子树都完成剪枝操作之后,就进行判断,如果根节点的左右子树都为null,并且根节点的值为0,那么就可以将根节点置为null,然后返回root。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode pruneTree(TreeNode root) {
if (root == null) return null;
root.left = pruneTree(root.left);
root.right = pruneTree(root.right);
if (root.left == null && root.right == null) {
if (root.val == 0) root = null;
}
return root;
}
}
https://leetcode.cn/problems/validate-binary-search-tree/
给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
节点的左子树只包含 小于 当前节点的数。
节点的右子树只包含 大于 当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:root = [2,1,3]
输出:true
示例 2:
输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。
提示:
树中节点数目范围在[1, 104] 内
-231 <= Node.val <= 231 - 1
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
}
}
我们都知道二叉搜索树是二叉树中的任何一个如果左右孩子存在,那么该节点左孩子节点的值要小于该节点的值,并且该节点的值要小于该节点右孩子节点的值,也就是说:二叉搜索树使用中序遍历的话得到的是一个升序的数字。那么在这道题目中,我们该如何判断某个节点的左孩子节点的值小于该节点的值,右孩子节点的值大于该节点的值呢?
我们可以使用前序遍历的方法,先找到二叉搜索树中最小的节点,然后用 prev 记录这个值,返回的时候,就先判断该节点的左子树是否符合二叉搜索树,如果不符合就可以直接返回 false,如果符合的话就需要将 prev 的值与 root 的 val 进行比较,如果 prev < root.val,那么将 prev 的值替换为当前节点的值,并且继续去判断该节点右子树是否为二叉搜索树。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
long prev = Long.MIN_VALUE;
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
boolean l = isValidBST(root.left);
if (l == false) return false;
if (root.val > prev) prev = root.val;
else return false;
boolean r = isValidBST(root.right);
return l && r;
}
}
https://leetcode.cn/problems/kth-smallest-element-in-a-bst/
给定一个二叉搜索树的根节点 root ,和一个整数 k ,请你设计一个算法查找其中第 k 个最小元素(从 1 开始计数)。
示例 1:
输入:root = [3,1,4,null,2], k = 1
输出:1
示例 2:
输入:root = [5,3,6,2,4,null,null,1], k = 3
输出:3
提示:
树中的节点数为 n 。
1 <= k <= n <= 104
0 <= Node.val <= 104
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int kthSmallest(TreeNode root, int k) {
}
}
这道题目可以使用优先级队列来解决,但是为了加强递归的使用,我们不使用优先级队列,而是使用递归来解决这个问题,根据二叉树的特性,要想找到二叉搜索树中第k小的元素,我们可以使用中序遍历二叉搜索树的方法,并且使用全局变量count 来记录当前遍历的节点是第几小的元素,以及使用一个全局变量 ret 来记录第 k 小的元素,中序遍历,没遍历一个节点,count就–,如果 count 为 0,就说明找到了这个元素。
在递归中,有些情况使用全局变量可以使得我们的代码变得很简单。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int count, ret;
public int kthSmallest(TreeNode root, int k) {
count = k;
dfs(root);
return ret;
}
private void dfs(TreeNode root) {
if (count == 0 || root == null) return;
dfs(root.left);
count--;
if (count == 0) {
ret = root.val;
return;
}
dfs(root.right);
}
}
https://leetcode.cn/problems/binary-tree-paths/
给你一个二叉树的根节点 root ,按 任意顺序 ,返回所有从根节点到叶子节点的路径。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [1,2,3,null,5]
输出:["1->2->5","1->3"]
示例 2:
输入:root = [1]
输出:["1"]
提示:
树中节点的数目在范围 [1, 100] 内
-100 <= Node.val <= 100
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<String> binaryTreePaths(TreeNode root) {
}
}
在这个题目中,我们可以使用前序遍历的方式,将路径上的所有节点的值给拼接到字符串的后面,当遇到叶子节点的时候就将这个字符串添加到集合中,然后返回,但是在返回的时候呢?我们需要将前面添加的一个节点的值给移除。
但是还不止如此,看题目我们可以发现,在节点和节点之间还需要使用 -> 来进行连接,所以我们到底什么时候移除 -> 和上一个几点的值,什么时候只是移除节点的值,如果字符串使用的是全局变量的话,回溯(恢复现场)就会比较麻烦,所以这个题目我们可以将字符串作为参数传递给函数,这样当返回的时候,这个参数就会自动回到之前的模样。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
//全局的集合变量用来存储二叉树所有路径上的值
List<String> list;
public List<String> binaryTreePaths(TreeNode root) {
list = new ArrayList<>();
//因为String的拼接需要重新创建对象,速度比较慢,所以我们字符串拼接就使用StringBuilder
dfs(root, new StringBuilder());
return list;
}
private void dfs(TreeNode root, StringBuilder s) {
if (root == null) return;
//因为StringBuilder的变化不会因为函数的返回而恢复,所以这里我们创建一个临时的StringBuidler类
StringBuilder sb = new StringBuilder(s);
sb.append(root.val);
if (root.left == null && root.right == null) {
list.add(sb.toString());
return;
}
//如果当前节点不是叶子节点,那么就加上->
sb.append("->");
dfs(root.left, sb);
dfs(root.right, sb);
}
}