import random
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import time
# 计算欧拉距离
def getDistance(dataSet, centroids, k):
clalist = []
for data in dataSet:
diff = np.tile(data, (k, 1)) - centroids # 相减 (np.tile(a,(2,1))就是把a先沿x轴复制1倍,即没有复制,仍然是 [0,1,2]。 再把结果沿y方向复制2倍得到array([[0,1,2],[0,1,2]]))
squaredDiff = diff ** 2 # 平方
squaredDist = np.sum(squaredDiff, axis=1) # 和 (axis=1表示行)
distance = squaredDist ** 0.5 # 开根号
clalist.append(distance)
clalist = np.array(clalist) # 返回一个每个点到质点的距离len(dateSet)*k的数组
return clalist
# 计算质心
def classify(dataSet, centroids, k):
# 计算样本到质心的距离
clalist = getDistance(dataSet, centroids, k)
# 分组并计算新的质心
minDistIndices = np.argmin(clalist, axis=1) # axis=1 表示求出每行的最小值的下标
newCentroids = pd.DataFrame(dataSet).groupby(
minDistIndices).mean() # DataFramte(dataSet)对DataSet分组,groupby(min)按照min进行统计分类,mean()对分类结果求均值
newCentroids = newCentroids.values
# 计算变化量
changed = newCentroids - centroids
return changed, newCentroids
def step(dataSet, k, newCentroids):
centroids = sorted(newCentroids.tolist()) # tolist()将矩阵转换成列表 sorted()排序
# 根据质心计算每个集群
cluster = []
clalist = getDistance(dataSet, centroids, k) # 调用欧拉距离
minDistIndices = np.argmin(clalist, axis=1)
for i in range(k):
cluster.append([])
for i, j in enumerate(minDistIndices): # enymerate()可同时遍历索引和遍历元素
cluster[j].append(dataSet[i])
print('质心为:%s' % centroids)
print('集群为:%s' % cluster)
for i in range(len(cluster)):
for j in range(len(cluster[i])):
plt.scatter(cluster[i][j][0], cluster[i][j][1], marker='o', color=colorSet[i], s=40, label='原始点')
# 记号形状 颜色 点的大小 设置标签
for i in range(len(centroids)):
plt.scatter(centroids[i][0], centroids[i][1], marker='x', color=colorSet[i], s=50, label='质心')
plt.show()
time.sleep(2)
# 使用k-means分类
def kmeans(dataSet, k):
# 随机取质心
centroids = random.sample(dataSet, k)
# 给定初始化
#centroids = [[4, 9], [3, 3], [2, 1], [6, 3]]
print("初始化k个点", centroids)
for i in range(len(dataSet)):
plt.scatter(dataSet[i][0], dataSet[i][1], marker='o', color='green', s=50, label='质心')
plt.show()
input()
for i in range(len(dataSet)):
plt.scatter(dataSet[i][0], dataSet[i][1], marker='o', color='green', s=50, label='质心')
for i in range(len(centroids)):
plt.scatter(centroids[i][0], centroids[i][1], marker='x', color=colorSet[i], s=100, label='质心')
plt.show()
# 迭代轮数
n = 1
# 更新质心 直到变化量全为0
changed, newCentroids = classify(dataSet, centroids, k)
while np.any(changed != 0):
input()
print("第", n, "轮")
n = n + 1
changed, newCentroids = classify(dataSet, newCentroids, k)
step(dataSet, k, newCentroids)
centroids = sorted(newCentroids.tolist()) # tolist()将矩阵转换成列表 sorted()排序
# 根据质心计算每个集群
cluster = []
clalist = getDistance(dataSet, centroids, k) # 调用欧拉距离
minDistIndices = np.argmin(clalist, axis=1)
for i in range(k):
cluster.append([])
for i, j in enumerate(minDistIndices): # enymerate()可同时遍历索引和遍历元素
cluster[j].append(dataSet[i])
return centroids, cluster
# 创建数据集
def createDataSet():
return [[1, 1], [1, 2], [2, 1], [6, 4], [6, 3], [5, 4], [10, 2], [4, 4], [3, 7], [4, 9], [5, 3], [2, 9],
[5, 8], [7, 0], [8, 8], [3, 3]]
if __name__ == '__main__':
dataset = createDataSet()
colorSet = ['grey', 'red', 'blue', 'orange']
centroids, cluster = kmeans(dataset, 4)