给出集合 [1,2,3,...,n],其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。
示例 1:
输入:n = 3, k = 3
输出:"213"
示例 2:
输入:n = 4, k = 9
输出:"2314"
示例 3:
输入:n = 3, k = 1
输出:"123"
提示:
1 <= n <= 9
1 <= k <= n!
class Solution {
public String getPermutation(int n, int k) {
int[] factorial = new int[n];
factorial[0] = 1;
for (int i = 1; i < n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
--k;
StringBuffer ans = new StringBuffer();
int[] valid = new int[n + 1];
Arrays.fill(valid, 1);
for (int i = 1; i <= n; ++i) {
int order = k / factorial[n - i] + 1;
for (int j = 1; j <= n; ++j) {
order -= valid[j];
if (order == 0) {
ans.append(j);
valid[j] = 0;
break;
}
}
k %= factorial[n - i];
}
return ans.toString();
}
}
来自力扣官方题解