【python】python课设 天气预测数据分析及可视化(完整源码)

发布时间:2023年12月24日

1. 前言

本文介绍了天气预测数据分析及可视化的实现过程使用joblib导入模型和自定义模块GetModel获取模型,输出模型的MAE。使用pyecharts库进行天气数据的可视化,展示南京当日天气数据的表格。总体来说,该文叙述通过调用自定义模块和第三方库,获取天气数据、进行模型预测,并使用 pyecharts 实现了可视化,展示了南京的实时天气、未来一周的天气趋势以及全国各省会城市今日的天气情况。

2. 项目结构

在这里插入图片描述

  • 天气数据的来源
    GetData文件使用python爬虫技术,爬取南京和全国的天气信息数据
    爬取网站:http://tianqi.2345.com/wea_history/58238.htm
    ProcessDate文件对爬取的天气数据进行了预处理
    几个CSV文件保存的是爬取后并经过处理的数据
  • 天气数据的预测
    GetModel文件通过训练预测模型来预测长春近一周的天气,该文件利用Joblib将模型保存到本地
    Main文件是项目主文件,通过运行该文件即可运行整个项目,该文件前部分获取保存到本地的预测模型来进行预测,并将预测结果打印到控制台
  • 天气数据的可视化
    Main文件后部分实现了天气数据的可视化

3. 详细介绍

3.1 main.py
import joblib
import datetime as DT
import GetModel

from pyecharts.charts import Bar, Grid, Line, Tab
from pyecharts.components import Table
from pyecharts.options import ComponentTitleOpts
from pyecharts.charts import Map
from pyecharts import options as opts


# 训练并保存模型并返回MAE
import ProcessData
import GetData

#import GetModel
r = GetModel.getModel()
print("MAE:", r[0])
# 读取保存的模型
model = joblib.load('Model.pkl')

# 最终预测结果
preds = model.predict(r[1])

print("未来7天预测")
for a in range(1, 8):
    #import datetime as DT
    today = DT.datetime.now()
    time = (today + DT.timedelta(days=a)).date()
    print(time.year, '.', time.month, '.', time.day,
          '最高气温', preds[a][0],
          '最低气温', preds[a][1],
          "空气质量", preds[a][2],
          )


'''
数据可视化代码
通过爬虫获取到的天气信息,利用pyecharts框架来实现绘图功能,实现天气的可视化
'''


'''
可视化当日南京天气数据
'''
# 获取当日南京天气数据
today_data = GetData.getToday(58238)
headers_ = ["日期", "最高温", "最低温", "天气", "风力风向", "空气质量指数"]
rows_ = [
    [today_data['日期'].values[0], today_data['最高温'].values[0], today_data['最低温'].values[0],
     today_data['天气'].values[0], today_data['风力风向'].values[0], today_data['空气质量指数'].values[0]],
]
def table_main() ->Table:
  c=(
    Table()
    .add(headers_, rows_)
    .set_global_opts(
        title_opts=ComponentTitleOpts(title="", subtitle="")
    )
  )
  return c


'''
可视化当日南京近一周的天气质量和气温
'''
# 获取最近七天的天气数据
week_data=GetData.getWeek(58238)
# 最近南京一周的天气和空气
airs = ProcessData.setAir(week_data)
low_temperature = ProcessData.setLowTemp(week_data)
high_temperature = ProcessData.setHighTemp(week_data)

def grid_week() -> Grid:
    x_data = ["前七天", "前六天", "前五天", "前四天", "前三天", "前两天", "前一天"]
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis(
            "最高温",
           high_temperature,
            yaxis_index=0,
            color="#d14a61",
        )
        .add_yaxis(
            "最低温",
            low_temperature,
            yaxis_index=1,
            color="#5793f3",
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                name="最高温",
                type_="value",
                min_=-30,
                max_=40,
                position="right",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#d14a61")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            )
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                type_="value",
                name="天气质量指数",
                min_=0,
                max_=300,
                position="left",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#675bba")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value}"),
                splitline_opts=opts.SplitLineOpts(
                    is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
                ),
            )
        )
        .set_global_opts(
            yaxis_opts=opts.AxisOpts(
                name="最低温",
                min_=-30,
                max_=40,
                position="right",
                offset=80,
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#5793f3")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            ),
            title_opts=opts.TitleOpts(title=""),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
        )
    )

    line = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis(
            "天气质量指数 "
            "优(0~50) 良(51~100) 轻度(101~150) 中度(151~200) 重度(201~300)",
            airs,
            yaxis_index=2,
            color="#675bba",
            label_opts=opts.LabelOpts(is_show=False),
        )
    )

    bar.overlap(line)
    return Grid().add(
        bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True
    )

'''
可视化预测南京的天气
'''

# 预测南京一周的天气和空气
predict_airs=[]
predict_low_temperature=[]
predict_high_temperature=[]
x_data=[]
for i in range(0,7):
    predict_high_temperature.append(round(preds[i][0],4))
    predict_low_temperature.append(round(preds[i][1],4))
    predict_airs.append(round(preds[i][2],4))
    x_data.append((today + DT.timedelta(days=i)).date())

def grid_week_predict() -> Grid:
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis(
            "最高温",
           predict_high_temperature,
            yaxis_index=0,
            color="#d14a61",
        )
        .add_yaxis(
            "最低温",
            predict_low_temperature,
            yaxis_index=1,
            color="#5793f3",
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                name="最高温",
                type_="value",
                min_=-30,
                max_=40,
                position="right",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#d14a61")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            )
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                type_="value",
                name="天气质量指数",
                min_=0,
                max_=300,
                position="left",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#675bba")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value}"),
                splitline_opts=opts.SplitLineOpts(
                    is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
                ),
            )
        )
        .set_global_opts(
            yaxis_opts=opts.AxisOpts(
                name="最低温",
                min_=-30,
                max_=40,
                position="right",
                offset=80,
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#5793f3")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            ),
            title_opts=opts.TitleOpts(title=""),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
        )
    )

    line = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis(
            "天气质量指数 "
            "优(0~50) 良(51~100) 轻度(101~150) 中度(151~200) 重度(201~300)",
            predict_airs,
            yaxis_index=2,
            color="#675bba",
            label_opts=opts.LabelOpts(is_show=False),
        )
    )

    bar.overlap(line)
    return Grid().add(
        bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True
    )




'''
获取全国各省会城市今日的天气情况
'''
china_today = GetData.getChinaToday()
china_today.to_csv("china_today.csv")


def setData(str,i):
    return china_today[i:i+1][str].values[0]
provinces = [
    "黑龙江","内蒙古", "吉林",  "辽宁", "河北","天津","山西", "陕西",
    "甘肃","宁夏", "青海","新疆", "西藏", "四川", "重庆", "山东", "河南",
    "江苏", "安徽","湖北", "浙江", "福建", "江西", "湖南", "贵州",
    "广西", "海南","上海","广东","云南","台湾"
]
rows=[]
for i in range(0,31):
    rows.append([provinces[i],setData('最低温',i),setData('最高温',i),setData('天气',i),setData('风力风向',i)])


def today_china_table() ->Table:
  c=(
    Table()
    .add(["省份","最低温","最高温", "天气", "风力风向"], rows)
    .set_global_opts(
     title_opts=ComponentTitleOpts(title="今日全国各省会城市的天气信息表", subtitle="")
  )
  )
  return c


china_airs = ProcessData.setAir(china_today)
airs_list=[]
for i in range(0,31):
    airs_list.append(china_airs[i])



# 分页图的标题
tab = Tab()
tab.add(table_main(), "今日南京")
tab.add(grid_week_predict(), "未来南京")
tab.add(grid_week(), "近一周南京")
tab.add(today_china_table(), "今日中国天气")
tab.render("天气网.html")


'''
 
    all_high_t = []
    all_low_t = []
    all_air = []
    all_high_t.append(preds[a][0])
    all_low_t.append(preds[a][1])
    all_air.append(preds[a][2])
temp = {"最高温": all_high_t, "最低温": all_low_t, "空气质量": all_air}
# 绘画折线图
plt.plot(range(1, 7), temp["最高温"], color="red", label="high_t")
plt.plot(range(1, 7), temp["最低温"], color="blue", label="low_t")
plt.legend()  # 显示图例
plt.ylabel("Temperature(°C)")
plt.xlabel("day")
# 显示
plt.show()
plt.plot(range(1, 7), temp["空气质量"], color="black", label="air")
plt.legend()
plt.ylabel(" ")
plt.xlabel("day")
plt.show()
'''
3.2 GetModel.py

from sklearn.ensemble import RandomForestRegressor
import joblib
from sklearn.metrics import mean_absolute_error
import ProcessData


# 训练并保存模型
def getModel(a="Model.pkl"):
    
    # 获取测试集、训练集、验证集
    [X_train, X_valid, y_train, y_valid, X_test] = ProcessData.ProcessData()

    # 随机树森林模型
    model = RandomForestRegressor(random_state=0, n_estimators=1001)
    # 训练模型
    model.fit(X_train, y_train)
    # 预测模型
    preds = model.predict(X_valid)
    # 用MAE评估
    score = mean_absolute_error(y_valid, preds)
    # 保存模型到本地
    joblib.dump(model, a)
    # 返回MAE
    return [score, X_test]

3.3 GetData.py
import requests
import pandas as pd
import datetime


# 提供年份和月份,爬取对应的的表格数据
url = "http://tianqi.2345.com/Pc/GetHistory"
headers = {
   "User-Agent":
       """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.41 Safari/537.36 Edg/101.0.1210.32"""
}

def craw_table(id,year,month):
    params = {
        "areaInfo[areaId]": id,
        "areaInfo[areaType]": 2,
        "date[year]": year,
        "date[month]": month
    }
    resq = requests.get(url, headers=headers, params=params)
    data = resq.json()["data"]
    # data frame
    df = pd.read_html(data)[0]
    return df


# 输入城市id,爬取该城市今日的天气数据
def getToday(id):
    # 获取当前年份和月份
    today = datetime.datetime.today()
    year = today.year
    month = today.month
    # 获取当日南京天气数据
    month_data =craw_table(id, year, month)
    return month_data.tail(1)

# 输入城市id,爬取该城市近七周的天气数据
def getWeek(id):
    # 获取当前年份和月份
    today = datetime.datetime.today()
    year = today.year
    month = today.month
    # 获取当日南京天气数据
    month_data =craw_table(id, year, month)
    return month_data.tail(7)

# 爬取全国各个省会城市的今日的天气数据
def getChinaToday():
    ids=[50953, 53463,58238,54342,53698,54527,53772,57036 ,52889,53614,52866,51463,
          55591, 56294, 57516,54823,57083,58238, 58321, 57494, 58457,58847,58606,
          57687,57816 ,59431,59758 ,58362 ,59287,56778,59554]
    list=[]
    for i in ids:
        df=getToday(i)
        list.append(df)
    return pd.concat(list).reset_index(drop=True)

# 获取南京最近3年的天气数据,用于预测
def getYears():
    today = datetime.datetime.today()
    df_list = []
    for year in range(today.year-5, today.year):
      for month in range(1, 13):
          df = craw_table(58238,year, month)
          df_list.append(df)

    for month in range(1,today.month+1):
        df = craw_table(58238, today.year, month)
        df_list.append(df)
     # 多年数据合并
    return pd.concat(df_list).reset_index(drop=True)

# 传入一个时间范围,获取某个时间范围的天气数据
def getPredictDate(year0,month0,day0,year1,month1,day1):
    id=58238
    date_list=[]
    if month0!=month1:
      date0=craw_table(id,year0,month0)
      date_ago=date0[day0-1:]
      date1 = craw_table(id,year1, month1)
      date_pre = date1[:day1]

      date_list.append(date_ago)
      date_list.append(date_pre)
      date=pd.concat(date_list).reset_index(drop=True)
    else:
      date0 = craw_table(id, year0, month0)
      date=date0[day0-1:day1]
    return date
3.4 ProcessData.py
from calendar import isleap

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
import GetData
import datetime as DT
'''
处理预测数据
'''


def setAir(week_data):
    airs = []
    for i in week_data['空气质量指数']:
        if isinstance(i, float) or pd.isna(i):
            airs.append(7)  # 或者你偏好的缺失数据的任何默认值
        elif '-' in str(i):
            airs.append(7)
        else:
            i = str(i).split(' ')[0]
            airs.append(int(i))
    return airs

# 气温数据处理:去掉数据的单位°并把数据变为整形
def setHighTemp(week_data):
    temperature = []
    for i in week_data['最高温']:
        i = i.split('°')[0]
        temperature.append(int(i))
    return temperature

def setLowTemp(week_data):
    temperature = []
    for i in week_data['最低温']:
        i = i.split('°')[0]
        temperature.append(int(i))
    return temperature

# 处理天气数据,为天气状态编码
def setCondition(week_data):
    # 天气状况编码
  flag = []
  for StringData in week_data['最低温']:
    if '晴' in str(StringData):
        flag.append(1)
    elif '多云' in str(StringData):
        flag.append(2)
    elif '阴' in str(StringData):
        flag.append(3)
    elif '雨' in str(StringData):
        flag.append(4)
    elif '雪' in str(StringData):
        flag.append(5)
    elif '雾' in str(StringData) or '霾' in str(StringData):
        flag.append(6)
    elif  '扬沙' in str(StringData):
        flag.append(7)
    else:
        flag.append(-1)
    return flag

def process(date):
   date['最高温']=setHighTemp(date)
   date['最低温']=setLowTemp(date)
   date['空气质量指数']=setAir(date)
   date1=date.drop('天气', axis=1)
   date2=date1.drop('风力风向',axis=1)
   return date2

#原来
def write(years, months,c):
 
    # 取现在日期
    today = DT.datetime.today()
    # 闰年片段
    st = isleap(today.year)

    week_ago = (today - DT.timedelta(days=months[0])).date()
    
    week_pre = (today + DT.timedelta(days=months[1])).date()
    if week_ago.month + week_pre.month == 3 or week_ago.month + week_pre.month == 5:
        if week_ago.month == 2 and not st == isleap(today.year - years[0]):
            if st:
                # 今年是,去年或未来不是,所以-1
                week_ago -= DT.timedelta(days=1)
            else:
                # 今年不是,去年或未来是,所以+1
                week_ago += DT.timedelta(days=1)
   
    # 爬取数据
    id =58238
    # 取到预处理后的用来预测的数据
    date0 = GetData.getPredictDate(week_ago.year-years[0],week_ago.month,week_ago.day,week_pre.year-years[1],week_pre.month,week_pre.day)
    date_=process(date0).set_index("日期")
    date_.to_csv(c)





# 功能: 对用来预测的数据进行预处理

def ProcessData():

    # 写入csv
    write([1,1], [14, 0], "date_train.csv")
    write([1,1],  [0, 14], "date_valid.csv")
    write([0,0], [14, 0], "date_test.csv")

    X_test = pd.read_csv("date_test.csv", index_col="日期", parse_dates=True)
    # 读取测试集和验证集
    X = pd.read_csv("date_train.csv", index_col="日期", parse_dates=True)
    y = pd.read_csv("date_valid.csv", index_col="日期", parse_dates=True)

    my_imputer = SimpleImputer()
    # train_test_split()是sklearn包的model_selection模块中提供的随机划分训练集和测试集的函数;
    # 使用train_test_split函数可以将原始数据集按照一定比例划分训练集和测试集对模型进行训练

    X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)

    imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train))
    imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid))
    imputed_X_train.columns = X_train.columns
    imputed_X_valid.columns = X_valid.columns
    imputed_y_train = pd.DataFrame(my_imputer.fit_transform(y_train))
    imputed_y_valid = pd.DataFrame(my_imputer.transform(y_valid))
    imputed_y_train.columns = y_train.columns
    imputed_y_valid.columns = y_valid.columns
    imputed_X_test = pd.DataFrame(my_imputer.fit_transform(X_test))

    # 返回分割后的数据集
    return [imputed_X_train, imputed_X_valid, imputed_y_train, imputed_y_valid, imputed_X_test]



3.5天气网.html
<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8">
    <title>Awesome-pyecharts</title>
                <script type="text/javascript" src="https://assets.pyecharts.org/assets/v5/echarts.min.js"></script>

    
</head>
<body >
            <style>
        .tab {
            overflow: hidden;
            border: 1px solid #ccc;
            background-color: #f1f1f1;
        }

        .tab button {
            background-color: inherit;
            float: left;
            border: none;
            outline: none;
            cursor: pointer;
            padding: 12px 16px;
            transition: 0.3s;
        }

        .tab button:hover {
            background-color: #ddd;
        }

        .tab button.active {
            background-color: #ccc;
        }

        .chart-container {
            display: block;
        }

        .chart-container:nth-child(n+2) {
            display: none;
        }
    </style>
    <div class="tab">
            <button class="tablinks" onclick="showChart(event, 'c95a7006653c463b87ea5f86fb2fa9d6')">今日南京</button>
            <button class="tablinks" onclick="showChart(event, 'd51b7fb3725d442fafd9365201317690')">未来南京</button>
            <button class="tablinks" onclick="showChart(event, '87f0e6e843f443f986ad5a3539b28a78')">近一周南京</button>
            <button class="tablinks" onclick="showChart(event, '2e9b063085384e43805f0f24afc63b80')">今日中国天气</button>
    </div>

    <div class="box">
                        <style>
            .fl-table {
                margin: 20px;
                border-radius: 5px;
                font-size: 12px;
                border: none;
                border-collapse: collapse;
                max-width: 100%;
                white-space: nowrap;
                word-break: keep-all;
            }

            .fl-table th {
                text-align: left;
                font-size: 20px;
            }

            .fl-table tr {
                display: table-row;
                vertical-align: inherit;
                border-color: inherit;
            }

            .fl-table tr:hover td {
                background: #00d1b2;
                color: #F8F8F8;
            }

            .fl-table td, .fl-table th {
                border-style: none;
                border-top: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-bottom: 3px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                padding: .5em .55em;
                font-size: 15px;
            }

            .fl-table td {
                border-style: none;
                font-size: 15px;
                vertical-align: center;
                border-bottom: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                height: 30px;
            }

            .fl-table tr:nth-child(even) {
                background: #F8F8F8;
            }
        </style>
        <div id="c95a7006653c463b87ea5f86fb2fa9d6" class="chart-container" style="">
            <p class="title" style="font-size: 18px; font-weight:bold;" > </p>
            <p class="subtitle" style="font-size: 12px;" > </p>
            <table class="fl-table">
    <thead>
        <tr>
            <th>日期</th>
            <th>最高温</th>
            <th>最低温</th>
            <th>天气</th>
            <th>风力风向</th>
            <th>空气质量指数</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>2023-12-19 周二</td>
            <td>1°</td>
            <td>-3°</td>
            <td>小雪~多云</td>
            <td>西北风2</td>
            <td>66</td>
        </tr>
    </tbody>
</table>
        </div>

                <div id="d51b7fb3725d442fafd9365201317690" class="chart-container" style="width:900px; height:500px; "></div>
    <script>
            document.getElementById('d51b7fb3725d442fafd9365201317690').style.width = document.getElementById('d51b7fb3725d442fafd9365201317690').parentNode.clientWidth + 'px';
        var chart_d51b7fb3725d442fafd9365201317690 = echarts.init(
            document.getElementById('d51b7fb3725d442fafd9365201317690'), 'white', {renderer: 'canvas'});
        var option_d51b7fb3725d442fafd9365201317690 = {
    "animation": true,
    "animationThreshold": 2000,
    "animationDuration": 1000,
    "animationEasing": "cubicOut",
    "animationDelay": 0,
    "animationDurationUpdate": 300,
    "animationEasingUpdate": "cubicOut",
    "animationDelayUpdate": 0,
    "aria": {
        "enabled": false
    },
    "color": [
        "#d14a61",
        "#5793f3",
        "#675bba",
        "#5470c6",
        "#91cc75",
        "#fac858",
        "#ee6666",
        "#73c0de",
        "#3ba272",
        "#fc8452",
        "#9a60b4",
        "#ea7ccc"
    ],
    "series": [
        {
            "type": "bar",
            "name": "\u6700\u9ad8\u6e29",
            "yAxisIndex": 0,
            "legendHoverLink": true,
            "data": [
                6.8277,
                6.3958,
                6.3958,
                6.3958,
                6.4043,
                8.8561,
                8.8247
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "bar",
            "name": "\u6700\u4f4e\u6e29",
            "yAxisIndex": 1,
            "legendHoverLink": true,
            "data": [
                -1.2148,
                -2.0799,
                -2.0799,
                -2.0799,
                -2.5325,
                2.0839,
                2.1768
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "line",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)",
            "connectNulls": false,
            "xAxisIndex": 0,
            "yAxisIndex": 2,
            "symbolSize": 4,
            "showSymbol": true,
            "smooth": false,
            "clip": true,
            "step": false,
            "data": [
                [
                    "2023-12-20",
                    16.4505
                ],
                [
                    "2023-12-21",
                    13.8302
                ],
                [
                    "2023-12-22",
                    13.8302
                ],
                [
                    "2023-12-23",
                    13.8302
                ],
                [
                    "2023-12-24",
                    14.8611
                ],
                [
                    "2023-12-25",
                    74.2737
                ],
                [
                    "2023-12-26",
                    67.959
                ]
            ],
            "hoverAnimation": true,
            "label": {
                "show": false,
                "margin": 8
            },
            "logBase": 10,
            "seriesLayoutBy": "column",
            "lineStyle": {
                "show": true,
                "width": 1,
                "opacity": 1,
                "curveness": 0,
                "type": "solid"
            },
            "areaStyle": {
                "opacity": 0
            },
            "zlevel": 0,
            "z": 0
        }
    ],
    "legend": [
        {
            "data": [
                "\u6700\u9ad8\u6e29",
                "\u6700\u4f4e\u6e29",
                "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)"
            ],
            "selected": {},
            "show": true,
            "padding": 5,
            "itemGap": 10,
            "itemWidth": 25,
            "itemHeight": 14,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "borderRadius": 0,
            "pageButtonItemGap": 5,
            "pageButtonPosition": "end",
            "pageFormatter": "{current}/{total}",
            "pageIconColor": "#2f4554",
            "pageIconInactiveColor": "#aaa",
            "pageIconSize": 15,
            "animationDurationUpdate": 800,
            "selector": false,
            "selectorPosition": "auto",
            "selectorItemGap": 7,
            "selectorButtonGap": 10
        }
    ],
    "tooltip": {
        "show": true,
        "trigger": "axis",
        "triggerOn": "mousemove|click",
        "axisPointer": {
            "type": "cross"
        },
        "showContent": true,
        "alwaysShowContent": false,
        "showDelay": 0,
        "hideDelay": 100,
        "enterable": false,
        "confine": false,
        "appendToBody": false,
        "transitionDuration": 0.4,
        "textStyle": {
            "fontSize": 14
        },
        "borderWidth": 0,
        "padding": 5,
        "order": "seriesAsc"
    },
    "xAxis": [
        {
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "inverse": false,
            "offset": 0,
            "splitNumber": 5,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            },
            "data": [
                "2023-12-20",
                "2023-12-21",
                "2023-12-22",
                "2023-12-23",
                "2023-12-24",
                "2023-12-25",
                "2023-12-26"
            ]
        }
    ],
    "yAxis": [
        {
            "name": "\u6700\u4f4e\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#5793f3"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 80,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u6700\u9ad8\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#d14a61"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 0,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#675bba"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value}"
            },
            "inverse": false,
            "position": "left",
            "offset": 0,
            "splitNumber": 5,
            "min": 0,
            "max": 300,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        }
    ],
    "title": [
        {
            "show": true,
            "target": "blank",
            "subtarget": "blank",
            "padding": 5,
            "itemGap": 10,
            "textAlign": "auto",
            "textVerticalAlign": "auto",
            "triggerEvent": false
        }
    ],
    "grid": [
        {
            "show": false,
            "zlevel": 0,
            "z": 2,
            "left": "5%",
            "right": "20%",
            "containLabel": false,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "shadowOffsetX": 0,
            "shadowOffsetY": 0
        }
    ]
};
        chart_d51b7fb3725d442fafd9365201317690.setOption(option_d51b7fb3725d442fafd9365201317690);
    </script>
                <div id="87f0e6e843f443f986ad5a3539b28a78" class="chart-container" style="width:900px; height:500px; "></div>
    <script>
            document.getElementById('87f0e6e843f443f986ad5a3539b28a78').style.width = document.getElementById('87f0e6e843f443f986ad5a3539b28a78').parentNode.clientWidth + 'px';
        var chart_87f0e6e843f443f986ad5a3539b28a78 = echarts.init(
            document.getElementById('87f0e6e843f443f986ad5a3539b28a78'), 'white', {renderer: 'canvas'});
        var option_87f0e6e843f443f986ad5a3539b28a78 = {
    "animation": true,
    "animationThreshold": 2000,
    "animationDuration": 1000,
    "animationEasing": "cubicOut",
    "animationDelay": 0,
    "animationDurationUpdate": 300,
    "animationEasingUpdate": "cubicOut",
    "animationDelayUpdate": 0,
    "aria": {
        "enabled": false
    },
    "color": [
        "#d14a61",
        "#5793f3",
        "#675bba",
        "#5470c6",
        "#91cc75",
        "#fac858",
        "#ee6666",
        "#73c0de",
        "#3ba272",
        "#fc8452",
        "#9a60b4",
        "#ea7ccc"
    ],
    "series": [
        {
            "type": "bar",
            "name": "\u6700\u9ad8\u6e29",
            "yAxisIndex": 0,
            "legendHoverLink": true,
            "data": [
                10,
                13,
                2,
                0,
                0,
                1,
                1
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "bar",
            "name": "\u6700\u4f4e\u6e29",
            "yAxisIndex": 1,
            "legendHoverLink": true,
            "data": [
                5,
                5,
                -3,
                -5,
                -2,
                -2,
                -3
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "line",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)",
            "connectNulls": false,
            "xAxisIndex": 0,
            "yAxisIndex": 2,
            "symbolSize": 4,
            "showSymbol": true,
            "smooth": false,
            "clip": true,
            "step": false,
            "data": [
                [
                    "\u524d\u4e03\u5929",
                    59
                ],
                [
                    "\u524d\u516d\u5929",
                    63
                ],
                [
                    "\u524d\u4e94\u5929",
                    29
                ],
                [
                    "\u524d\u56db\u5929",
                    50
                ],
                [
                    "\u524d\u4e09\u5929",
                    26
                ],
                [
                    "\u524d\u4e24\u5929",
                    42
                ],
                [
                    "\u524d\u4e00\u5929",
                    66
                ]
            ],
            "hoverAnimation": true,
            "label": {
                "show": false,
                "margin": 8
            },
            "logBase": 10,
            "seriesLayoutBy": "column",
            "lineStyle": {
                "show": true,
                "width": 1,
                "opacity": 1,
                "curveness": 0,
                "type": "solid"
            },
            "areaStyle": {
                "opacity": 0
            },
            "zlevel": 0,
            "z": 0
        }
    ],
    "legend": [
        {
            "data": [
                "\u6700\u9ad8\u6e29",
                "\u6700\u4f4e\u6e29",
                "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)"
            ],
            "selected": {},
            "show": true,
            "padding": 5,
            "itemGap": 10,
            "itemWidth": 25,
            "itemHeight": 14,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "borderRadius": 0,
            "pageButtonItemGap": 5,
            "pageButtonPosition": "end",
            "pageFormatter": "{current}/{total}",
            "pageIconColor": "#2f4554",
            "pageIconInactiveColor": "#aaa",
            "pageIconSize": 15,
            "animationDurationUpdate": 800,
            "selector": false,
            "selectorPosition": "auto",
            "selectorItemGap": 7,
            "selectorButtonGap": 10
        }
    ],
    "tooltip": {
        "show": true,
        "trigger": "axis",
        "triggerOn": "mousemove|click",
        "axisPointer": {
            "type": "cross"
        },
        "showContent": true,
        "alwaysShowContent": false,
        "showDelay": 0,
        "hideDelay": 100,
        "enterable": false,
        "confine": false,
        "appendToBody": false,
        "transitionDuration": 0.4,
        "textStyle": {
            "fontSize": 14
        },
        "borderWidth": 0,
        "padding": 5,
        "order": "seriesAsc"
    },
    "xAxis": [
        {
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "inverse": false,
            "offset": 0,
            "splitNumber": 5,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            },
            "data": [
                "\u524d\u4e03\u5929",
                "\u524d\u516d\u5929",
                "\u524d\u4e94\u5929",
                "\u524d\u56db\u5929",
                "\u524d\u4e09\u5929",
                "\u524d\u4e24\u5929",
                "\u524d\u4e00\u5929"
            ]
        }
    ],
    "yAxis": [
        {
            "name": "\u6700\u4f4e\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#5793f3"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 80,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u6700\u9ad8\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#d14a61"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 0,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#675bba"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value}"
            },
            "inverse": false,
            "position": "left",
            "offset": 0,
            "splitNumber": 5,
            "min": 0,
            "max": 300,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        }
    ],
    "title": [
        {
            "show": true,
            "target": "blank",
            "subtarget": "blank",
            "padding": 5,
            "itemGap": 10,
            "textAlign": "auto",
            "textVerticalAlign": "auto",
            "triggerEvent": false
        }
    ],
    "grid": [
        {
            "show": false,
            "zlevel": 0,
            "z": 2,
            "left": "5%",
            "right": "20%",
            "containLabel": false,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "shadowOffsetX": 0,
            "shadowOffsetY": 0
        }
    ]
};
        chart_87f0e6e843f443f986ad5a3539b28a78.setOption(option_87f0e6e843f443f986ad5a3539b28a78);
    </script>
                        <style>
            .fl-table {
                margin: 20px;
                border-radius: 5px;
                font-size: 12px;
                border: none;
                border-collapse: collapse;
                max-width: 100%;
                white-space: nowrap;
                word-break: keep-all;
            }

            .fl-table th {
                text-align: left;
                font-size: 20px;
            }

            .fl-table tr {
                display: table-row;
                vertical-align: inherit;
                border-color: inherit;
            }

            .fl-table tr:hover td {
                background: #00d1b2;
                color: #F8F8F8;
            }

            .fl-table td, .fl-table th {
                border-style: none;
                border-top: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-bottom: 3px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                padding: .5em .55em;
                font-size: 15px;
            }

            .fl-table td {
                border-style: none;
                font-size: 15px;
                vertical-align: center;
                border-bottom: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                height: 30px;
            }

            .fl-table tr:nth-child(even) {
                background: #F8F8F8;
            }
        </style>
        <div id="2e9b063085384e43805f0f24afc63b80" class="chart-container" style="">
            <p class="title" style="font-size: 18px; font-weight:bold;" > 今日全国各省会城市的天气信息表</p>
            <p class="subtitle" style="font-size: 12px;" > </p>
            <table class="fl-table">
    <thead>
        <tr>
            <th>省份</th>
            <th>最低温</th>
            <th>最高温</th>
            <th>天气</th>
            <th>风力风向</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>黑龙江</td>
            <td>-29°</td>
            <td>-20°</td>
            <td>多云</td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>内蒙古</td>
            <td>-26°</td>
            <td>-16°</td>
            <td>~</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>吉林</td>
            <td>-3°</td>
            <td>1°</td>
            <td>小雪~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>辽宁</td>
            <td>-25°</td>
            <td>-11°</td>
            <td>~多云</td>
            <td>北风3</td>
        </tr>
        <tr>
            <td>河北</td>
            <td>-11°</td>
            <td>-2°</td>
            <td>多云~</td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>天津</td>
            <td>-11°</td>
            <td>-5°</td>
            <td></td>
            <td>西北风4</td>
        </tr>
        <tr>
            <td>山西</td>
            <td>-16°</td>
            <td>-2°</td>
            <td>多云~</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>陕西</td>
            <td>-3°</td>
            <td>4°</td>
            <td>~多云</td>
            <td>东北风3</td>
        </tr>
        <tr>
            <td>甘肃</td>
            <td>-10°</td>
            <td>-1°</td>
            <td></td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>宁夏</td>
            <td>-17°</td>
            <td>-8°</td>
            <td>多云~</td>
            <td>东风2</td>
        </tr>
        <tr>
            <td>青海</td>
            <td>-13°</td>
            <td>4°</td>
            <td>多云~</td>
            <td>西风2</td>
        </tr>
        <tr>
            <td>新疆</td>
            <td>-22°</td>
            <td>-18°</td>
            <td>多云~</td>
            <td>东南风1</td>
        </tr>
        <tr>
            <td>西藏</td>
            <td>-5°</td>
            <td>6°</td>
            <td></td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>四川</td>
            <td>1°</td>
            <td>10°</td>
            <td></td>
            <td>东南风2</td>
        </tr>
        <tr>
            <td>重庆</td>
            <td>4°</td>
            <td>8°</td>
            <td>~多云</td>
            <td>东北风1</td>
        </tr>
        <tr>
            <td>山东</td>
            <td>-13°</td>
            <td>-2°</td>
            <td>多云~</td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>河南</td>
            <td>-6°</td>
            <td>3°</td>
            <td>多云~</td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>江苏</td>
            <td>-3°</td>
            <td>1°</td>
            <td>小雪~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>安徽</td>
            <td>-5°</td>
            <td>1°</td>
            <td>~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>湖北</td>
            <td>-3°</td>
            <td>5°</td>
            <td>~多云</td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>浙江</td>
            <td>0°</td>
            <td>3°</td>
            <td></td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>福建</td>
            <td>10°</td>
            <td>15°</td>
            <td>~小雨</td>
            <td>东北风1</td>
        </tr>
        <tr>
            <td>江西</td>
            <td>1°</td>
            <td>3°</td>
            <td>多云</td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>湖南</td>
            <td>0°</td>
            <td>4°</td>
            <td>雨夹雪~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>贵州</td>
            <td>-1°</td>
            <td>2°</td>
            <td></td>
            <td>东北风3</td>
        </tr>
        <tr>
            <td>广西</td>
            <td>7°</td>
            <td>10°</td>
            <td></td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>海南</td>
            <td>12°</td>
            <td>15°</td>
            <td>小雨~</td>
            <td>东北风4</td>
        </tr>
        <tr>
            <td>上海</td>
            <td>0°</td>
            <td>5°</td>
            <td>小雨~</td>
            <td>西北风3</td>
        </tr>
        <tr>
            <td>广东</td>
            <td>7°</td>
            <td>11°</td>
            <td>~多云</td>
            <td>北风4</td>
        </tr>
        <tr>
            <td>云南</td>
            <td>5°</td>
            <td>18°</td>
            <td>多云</td>
            <td>西南风3</td>
        </tr>
        <tr>
            <td>台湾</td>
            <td>19°</td>
            <td>28°</td>
            <td>~小雨</td>
            <td>北风3</td>
        </tr>
    </tbody>
</table>
        </div>

    </div>

    <script>
    </script>
    <script>
        (function() {
            containers = document.getElementsByClassName("chart-container");
            if(containers.length > 0) {
                containers[0].style.display = "block";
            }
        })()

        function showChart(evt, chartID) {
            let containers = document.getElementsByClassName("chart-container");
            for (let i = 0; i < containers.length; i++) {
                containers[i].style.display = "none";
            }

            let tablinks = document.getElementsByClassName("tablinks");
            for (let i = 0; i < tablinks.length; i++) {
                tablinks[i].className = "tablinks";
            }

            document.getElementById(chartID).style.display = "block";
            evt.currentTarget.className += " active";
        }
    </script>
</body>
</html>

4. 成果展示

在这里插入图片描述
在这里插入图片描述

文章来源:https://blog.csdn.net/weixin_69423932/article/details/135184643
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。