给你一个整数数组?nums
?,判断是否存在三元组?[nums[i], nums[j], nums[k]]
?满足?i != j
、i != k
?且?j != k
?,同时还满足?nums[i] + nums[j] + nums[k] == 0
?。请
你返回所有和为?0
?且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4] 输出:[[-1,-1,2],[-1,0,1]] 解释: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。 nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。 nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。 不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。 注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1] 输出:[] 解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0] 输出:[[0,0,0]] 解释:唯一可能的三元组和为 0 。
提示:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
class Solution:
def threeSum(self, nums: [int]) -> [[int]]:
nums.sort()
res, k = [], 0
for k in range(len(nums) - 2):
if nums[k] > 0: break # 1. because of j > i > k.
if k > 0 and nums[k] == nums[k - 1]: continue # 2. skip the same `nums[k]`.
i, j = k + 1, len(nums) - 1
while i < j: # 3. double pointer
s = nums[k] + nums[i] + nums[j]
if s < 0:
i += 1
while i < j and nums[i] == nums[i - 1]: i += 1
elif s > 0:
j -= 1
while i < j and nums[j] == nums[j + 1]: j -= 1
else:
res.append([nums[k], nums[i], nums[j]])
i += 1
j -= 1
while i < j and nums[i] == nums[i - 1]: i += 1
while i < j and nums[j] == nums[j + 1]: j -= 1
return res