DataX&数据同步(全量)

发布时间:2024年01月15日

1. DataX简介

1.1 DataX概述

??DataX 是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。
源码地址:https://github.com/alibaba/DataX

1.2 DataX支持的数据源

在这里插入图片描述
在这里插入图片描述

2. DataX架构原理

2.1 DataX设计理念

??为了解决异构数据源同步问题,DataX将复杂的网状的同步链路变成了星型数据链路,DataX作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到DataX,便能跟已有的数据源做到无缝数据同步。
在这里插入图片描述

2.2 DataX框架设计

??DataX本身作为离线数据同步框架,采用Framework + plugin架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。
在这里插入图片描述

2.3 DataX运行流程

??下面用一个DataX作业生命周期的时序图说明DataX的运行流程、核心概念以及每个概念之间的关系。
在这里插入图片描述

2.4 DateX调度决策思路

??举例来说,用户提交了一个DataX作业,并且配置了总的并发度为20,目的是对一个有100张分表的mysql数据源进行同步。DataX的调度决策思路是:
1)DataX Job根据分库分表切分策略,将同步工作分成100个Task。
2)根据配置的总的并发度20,以及每个Task Group的并发度5,DataX计算共需要分配4个TaskGroup。
3)4个TaskGroup平分100个Task,每一个TaskGroup负责运行25个Task。

3. DataX部署

1)下载DataX安装包并上传到hadoop102的/opt/software
2)解压datax.tar.gz到/opt/module

[atguigu@hadoop102 software]$ tar -zxvf datax.tar.gz -C /opt/module/

3)自检,执行如下命令

[atguigu@hadoop102 ~]$ python /opt/module/datax/bin/datax.py /opt/module/datax/job/job.json

出现如下内容,则表明安装成功
在这里插入图片描述

4. DataX使用

??DataX的使用十分简单,用户只需根据自己同步数据的数据源和目的地选择相应的Reader和Writer,并将Reader和Writer的信息配置在一个json文件中,然后执行如下命令提交数据同步任务即可。

[atguigu@hadoop102 datax]$ python bin/datax.py path/to/your/job.json

4.1 DataX配置文件格式

??可以使用如下命名查看DataX配置文件模板。

[atguigu@hadoop102 datax]$ python bin/datax.py -r mysqlreader -w hdfswriter

??配置文件模板如下,json最外层是一个job,job包含setting和content两部分,其中setting用于对整个job进行配置,content用户配置数据源和目的地。
在这里插入图片描述
Reader和Writer的具体参数可参考官方文档,地址如下:
https://github.com/alibaba/DataX/blob/master/README.md
在这里插入图片描述

4.2 同步MySQL数据到HDFS案例

??案例要求:同步gmall数据库中base_province表数据到HDFS的/base_province目录
需求分析:要实现该功能,需选用MySQLReader和HDFSWriter,MySQLReader具有两种模式分别是TableMode和QuerySQLMode,前者使用table,column,where等属性声明需要同步的数据;后者使用一条SQL查询语句声明需要同步的数据。本案例使用TableMode实现

1. Mysql数据库gmall的base_province表数据内容如下:

在这里插入图片描述

2. 编写datax的配置文件

[atguigu@hadoop102 ~]$ vim /opt/module/datax/job/base_province.json
{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "column": [
                            "id",
                            "name",
                            "region_id",
                            "area_code",
                            "iso_code",
                            "iso_3166_2"
                        ],
                        "where": "id>=3",
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://hadoop102:3306/gmall"
                                ],
                                "table": [
                                    "base_province"
                                ]
                            }
                        ],
                        "password": "000000",
                        "splitPk": "",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "column": [
                            {
                                "name": "id",
                                "type": "bigint"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "region_id",
                                "type": "string"
                            },
                            {
                                "name": "area_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_3166_2",
                                "type": "string"
                            }
                        ],
                        "compress": "gzip",
                        "defaultFS": "hdfs://hadoop102:8020",
                        "fieldDelimiter": "\t",
                        "fileName": "base_province",
                        "fileType": "text",
                        "path": "/base_province",
                        "writeMode": "append"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}

3. 配置文件说明

  1. Reader参数说明:
    在这里插入图片描述

  2. Writer参数说明
    在这里插入图片描述
    注意事项:
    HFDS Writer并未提供nullFormat参数:也就是用户并不能自定义null值写到HFDS文件中的存储格式。默认情况下,HFDS Writer会将null值存储为空字符串(‘’),而Hive默认的null值存储格式为\N。所以后期将DataX同步的文件导入Hive表就会出现问题。
    解决该问题的方案有两个:
    一是修改DataX HDFS Writer的源码,增加自定义null值存储格式的逻辑,可参考https://blog.csdn.net/u010834071/article/details/105506580

  3. Setting参数说明
    在这里插入图片描述

4. 提交任务

(1)在HDFS创建/base_province目录
使用DataX向HDFS同步数据时,需确保目标路径已存在

[atguigu@hadoop102 datax]$ hadoop fs -mkdir /base_province

(2)进入DataX根目录

[atguigu@hadoop102 datax]$ cd /opt/module/datax 

(3)执行如下命令

[atguigu@hadoop102 datax]$ python bin/datax.py job/base_province.json 

(4)查看结果

  1. DataX打印日志
    在这里插入图片描述

  2. 查看HDFS文件
    在这里插入图片描述

4.3 同步MySQL数据到HDFS案例(DataX传参)

??通常情况下,离线数据同步任务需要每日定时重复执行,故HDFS上的目标路径通常会包含一层日期,以对每日同步的数据加以区分,也就是说每日同步数据的目标路径不是固定不变的,因此DataX配置文件中HDFS Writer的path参数的值应该是动态的。为实现这一效果,就需要使用DataX传参的功能。
DataX传参的用法如下,在JSON配置文件中使用${param}引用参数,在提交任务时使用-p"-Dparam=value"传入参数值,具体示例如下。

1. 修改配置文件base_province_param.json

[atguigu@hadoop102 ~]$ vim /opt/module/datax/job/base_province_param.json

2. 配置文件内容如下

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://hadoop102:3306/gmall"
                                ],
                                "querySql": [
                                    "select id,name,region_id,area_code,iso_code,iso_3166_2 from base_province where id>=3"
                                ]
                            }
                        ],
                        "password": "000000",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "column": [
                            {
                                "name": "id",
                                "type": "bigint"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "region_id",
                                "type": "string"
                            },
                            {
                                "name": "area_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_3166_2",
                                "type": "string"
                            }
                        ],
                        "compress": "gzip",
                        "defaultFS": "hdfs://hadoop102:8020",
                        "fieldDelimiter": "\t",
                        "fileName": "base_province",
                        "fileType": "text",
                        "path": "/base_province/${dt}",
                        "writeMode": "append"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}

重点内容如下:
在这里插入图片描述

3. 提交任务

(1)创建目标路径

[atguigu@hadoop102 datax]$ hadoop fs -mkdir /base_province/2024-01-14

(2)进入DataX根目录

[atguigu@hadoop102 datax]$ cd /opt/module/datax 

(3)执行如下命令

[atguigu@hadoop102 datax]$ python bin/datax.py -p"-Ddt=2024-01-14" job/base_province_param.json

在这里插入图片描述

(4)查看结果

[atguigu@hadoop102 datax]$ hadoop fs -ls /base_province

在这里插入图片描述

4.4 同步HDFS 数据到 Mysql案例

??案例要求:同步HDFS上的/base_province目录下的数据到MySQL gmall 数据库下的test_province表。
需求分析:要实现该功能,需选用HDFSReader和MySQLWriter。

1. 编写配置文件

(1)创建配置文件base_province_hdfsToMysql.json

[atguigu@hadoop102 ~]$ vim /opt/module/datax/job/base_province_hdfsToMysql.json

(2)配置文件内容如下

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "hdfsreader",
                    "parameter": {
                        "defaultFS": "hdfs://hadoop102:8020",
                        "path": "/base_province",
                        "column": [
                            "*"
                        ],
                        "fileType": "text",
                        "compress": "gzip",
                        "encoding": "UTF-8",
                        "nullFormat": "\\N",
                        "fieldDelimiter": "\t",
                    }
                },
                "writer": {
                    "name": "mysqlwriter",
                    "parameter": {
                        "username": "root",
                        "password": "000000",
                        "connection": [
                            {
                                "table": [
                                    "test_province"
                                ],
                                "jdbcUrl": "jdbc:mysql://hadoop102:3306/gmall?useUnicode=true&characterEncoding=utf-8"
                            }
                        ],
                        "column": [
                            "id",
                            "name",
                            "region_id",
                            "area_code",
                            "iso_code",
                            "iso_3166_2"
                        ],
                        "writeMode": "replace"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}

2. 配置文件说明

(1)Reader参数说明
在这里插入图片描述
(2)Writer参数说明
在这里插入图片描述

3. 提交任务

(1)在MySQL中创建gmall.test_province表

DROP TABLE IF EXISTS `test_province`;
CREATE TABLE `test_province`  (
  `id` bigint(20) NOT NULL,
  `name` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `region_id` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `area_code` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `iso_code` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `iso_3166_2` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

(2)进入DataX根目录

[atguigu@hadoop102 datax]$ cd /opt/module/datax

(3)执行如下命令

[atguigu@hadoop102 datax]$ python bin/datax.py job/base_province_hdfsToMysql.json

(4)查看结果

  • DataX打印日志
    在这里插入图片描述

  • mysql目标表数据
    在这里插入图片描述

文章来源:https://blog.csdn.net/qq_41246557/article/details/135584013
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。