题目链接
给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
示例 :
输入: word1 = "sea", word2 = "eat"
输出: 2
解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"
解答:
class Solution {
public int minDistance(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
int[][] dp = new int[len1 + 1][len2 + 1];
for (int i = 1; i <= len1; i++) {
for (int j = 1; j <= len2; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return len1 + len2 - dp[len1][len2] * 2;
}
}
本题类似于先前做过的最长公共子序列,我们可以用求公共序列的方式推出要删除的数字,dp设计为最长公共子序的长度,所以当word1.charAt(i - 1) == word2.charAt(j - 1)成立,我们进行+1,不同时取dp[i - 1][j]和 dp[i][j - 1])更大的部分。
题目链接
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 :
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
解答:
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length();
int n = word2.length();
int[][] dp = new int[m + 1][n + 1];
// 初始化
for (int i = 1; i <= m; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= n; j++) {
dp[0][j] = j;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
// 因为dp数组有效位从1开始
// 所以当前遍历到的字符串的位置为i-1 | j-1
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i][j - 1]), dp[i - 1][j]) + 1;
}
}
}
return dp[m][n];
}
}
本题是动态规划最重要的编辑距离问题,在我们当前两个字符word1.charAt(i - 1) == word2.charAt(j - 1)成立的时候,意味着我们不需要做任何操作,所以则有dp[i][j] = dp[i - 1][j - 1]; 不成立时我们考虑增(删)和替换的情况(注:增和删本质上是一样的)删除第一个字符串和删除第二个字符串则是 dp[i][j - 1])和 dp[i - 1][j],替换则是在原字符的情况下修改,则有dp[i - 1][j - 1],最后+1是添加一次次数。