线段树一般有5个操作:
- pushup:用子节点更新当前节点信息
- pushdown:把懒标记往下传
- build:初始化一棵树
- modify:修改一个区间
- query:查询一个区间
不带懒标记(支持单点修改)的线段树算法见本人博客:
243. 一个简单的整数问题2 - AcWing题库https://www.acwing.com/problem/content/244/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 100010;
int n, m;
int w[N];
struct Node
{
int l, r;
LL sum, add;
} tr[N * 4];
void pushup(int u)
{
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void pushdown(int u)
{
auto &root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];
if (root.add)
{
left.add += root.add, left.sum += (LL)(left.r - left.l + 1) * root.add;
right.add += root.add, right.sum += (LL)(right.r - right.l + 1) * root.add;
root.add = 0;
}
}
void build(int u, int l, int r)
{
if (l == r) tr[u] = {l, r, w[r], 0};
else
{
tr[u] = {l, r};
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
void modify(int u, int l, int r, int d)
{
if (tr[u].l >= l && tr[u].r <= r)
{
tr[u].sum += (LL)(tr[u].r - tr[u].l + 1) * d;
tr[u].add += d;
}
else // 一定要分裂
{
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid) modify(u << 1, l, r, d);
if (r > mid) modify(u << 1 | 1, l, r, d);
pushup(u);
}
}
LL query(int u, int l, int r)
{
if (tr[u].l >= l && tr[u].r <= r) return tr[u].sum;
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
LL sum = 0;
if (l <= mid) sum = query(u << 1, l, r);
if (r > mid) sum += query(u << 1 | 1, l, r);
return sum;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &w[i]);
build(1, 1, n);
char op[2];
int l, r, d;
while (m--)
{
scanf("%s%d%d", op, &l, &r);
if (*op == 'C')
{
scanf("%d", &d);
modify(1, l, r, d);
}
else printf("%lld\n", query(1, l, r));
}
return 0;
}