挑选富集分析结果 enrichments

发布时间:2024年01月12日

?


#2.2挑选term---

selected_clusterenrich=enrichmets[grepl(pattern = "cilium|matrix|excular|BMP|inflamm|development|muscle|
                                        vaso|pulmonary|alveoli",
                                        x = enrichmets$Description),]

head(selected_clusterenrich) 

distinct(selected_clusterenrich)

# remove duplicate rows based on Description 并且保留其他所有变量
distinct_df <- distinct(enrichmets, Description,.keep_all = TRUE)

library(ggplot2)
ggplot( distinct_df %>%
         dplyr::filter(stringr::str_detect(pattern = "cilium|matrix|excular|BMP|inflamm|development|muscle",Description))  %>%
         group_by(Description) %>%
         add_count()  %>%
         dplyr::arrange(dplyr::desc(n),dplyr::desc(Description)) %>%
         mutate(Description =forcats:: fct_inorder(Description))
       
       , #fibri|matrix|colla
       aes(Cluster, Description)) +
  geom_point(aes(fill=p.adjust, size=Count), shape=21)+
  theme_bw()+
  theme(axis.text.x=element_text(angle=90,hjust = 1,vjust=0.5),
        axis.text.y=element_text(size = 12),
        axis.text = element_text(color = 'black', size = 12)
  )+
  scale_fill_gradient(low="red",high="blue")+
  labs(x=NULL,y=NULL)
# coord_flip()

head(enrichmets)

ggplot( distinct(enrichmets,Description,.keep_all=TRUE)  %>% 
        #  dplyr::mutate(Cluster = factor(Cluster, levels = unique(.$Cluster))) %>%
           
          dplyr::mutate(Description = factor(Description, levels = unique(.$Description))) %>%
        #  dplyr::group_by(Cluster)  %>%
         dplyr::filter(stringr::str_detect(pattern = "cilium organization|motile cilium|cilium movemen|cilium assembly|
                                           cell-matrix adhesion|extracellular matrix organization|regulation of acute inflammatory response to antigenic stimulus|
                                           collagen-containing extracellular matrix|negative regulation of BMP signaling pathway|
                                           extracellular matrix structural constituent|extracellular matrix binding|fibroblast proliferation|
                                           collagen biosynthetic process|collagen trimer|fibrillar collagen trimer|inflammatory response to antigenic stimulus|
                                           chemokine activity|chemokine production|cell chemotaxis|chemoattractant activity|
                                           NLRP3 inflammasome complex assembly|inflammatory response to wounding|Wnt signaling pathway|response to oxidative stress|
                                           regulation of vascular associated smooth muscle cell proliferation|
                                           venous blood vessel development|regulation of developmental growth|lung alveolus development|myofibril assembly|
                                           blood vessel diameter maintenance|
                                           gas transport|cell maturation|regionalization|oxygen carrier activity|oxygen binding|
                                           vascular associated smooth muscle cell proliferation",Description))     %>%
       #  group_by(Description) %>%
         add_count()  %>%
         dplyr::arrange(dplyr::desc(n),dplyr::desc(Description))  %>%
        mutate(Description =forcats:: fct_inorder(Description))
       
       , #fibri|matrix|colla
       aes(Cluster, y = Description)) +  #stringr:: str_wrap
  geom_point(aes(fill=p.adjust, size=Count), shape=21)+
  theme_bw()+
  theme(axis.text.x=element_text(angle=90,hjust = 1,vjust=0.5),
        axis.text.y=element_text(size = 12),
        axis.text = element_text(color = 'black', size = 12)
  )+
  scale_fill_gradient(low="red",high="blue")+
  labs(x=NULL,y=NULL)
# coord_flip()
print(getwd())



p=ggplot( distinct(enrichmets,Description,.keep_all=TRUE)  %>%
            
            dplyr::mutate(Description = factor(Description, levels = unique(.$Description))) %>%  #调整terms显示顺序
            dplyr::filter(stringr::str_detect(pattern = "cilium organization|motile cilium|cilium movemen|cilium assembly|
                                           cell-matrix adhesion|extracellular matrix organization|regulation of acute inflammatory response to antigenic stimulus|
                                           collagen-containing extracellular matrix|negative regulation of BMP signaling pathway|
                                           extracellular matrix structural constituent|extracellular matrix binding|fibroblast proliferation|
                                           collagen biosynthetic process|collagen trimer|fibrillar collagen trimer|inflammatory response to antigenic stimulus|
                                           chemokine activity|chemokine production|cell chemotaxis|chemoattractant activity|
                                           NLRP3 inflammasome complex assembly|inflammatory response to wounding|Wnt signaling pathway|response to oxidative stress|
                                           regulation of vascular associated smooth muscle cell proliferation|
                                           venous blood vessel development|regulation of developmental growth|lung alveolus development|myofibril assembly|
                                           blood vessel diameter maintenance|
                                           gas transport|cell maturation|regionalization|oxygen carrier activity|oxygen binding|
                                           vascular associated smooth muscle cell proliferation",Description))  %>%
            group_by(Description) %>%
            add_count()  %>%
            dplyr::arrange(dplyr::desc(n),dplyr::desc(Description)) %>%
            mutate(Description =forcats:: fct_inorder(Description))
          
          , #fibri|matrix|colla
          aes(Cluster, y = Description)) +  #stringr:: str_wrap
  #scale_y_discrete(labels = function(x) stringr::str_wrap(x, width = 60)) +  #调整terms长度
  geom_point(aes(fill=p.adjust, size=Count), shape=21)+
  theme_bw()+
  theme(axis.text.x=element_text(angle=90,hjust = 1,vjust=0.5),
        axis.text.y=element_text(size = 12),
        axis.text = element_text(color = 'black', size = 12)
  )+
  scale_fill_gradient(low="red",high="blue")+
  labs(x=NULL,y=NULL)
# coord_flip()
print(getwd())




ggsave(filename ="~/silicosis/spatial/sp_cluster_rigions_after_harmony/enrichents12.pdf",plot = p,
       width = 10,height = 12,limitsize = FALSE)



######展示term内所有基因,用热图展示-------

#提取画图的数据
  
p$data


#提取图形中的所有基因-----
mygenes=  p$data $geneID %>% stringr::str_split(.,"/",simplify = TRUE)  %>%as.vector()   %>%unique()
frame_for_genes=p$data %>%as.data.frame() %>% dplyr::group_by(Cluster)  #后面使用split的话,必须按照分组排序
head(frame_for_genes)

my_genelist=  split(frame_for_genes, frame_for_genes$Cluster, drop = TRUE)  %>%  #注意drop参数的理解

  lapply(function(x) select(x, geneID));my_genelist
                  


my_genelist=  split(frame_for_genes, frame_for_genes$Cluster, drop = TRUE)  %>%  #注意drop参数的理解
  
  lapply(function(x) x$geneID);my_genelist

mygenes=my_genelist %>% lapply( function(x)  {stringr::str_split(x,"/",simplify = TRUE)  %>%as.vector()   %>%unique()}   )

#准备画热图,加载seurat对象
load("/home/data/t040413/silicosis/spatial_transcriptomics/silicosis_ST_harmony_SCT_r0.5.rds")
{dim(d.all)
  DefaultAssay(d.all)="Spatial"
  #visium_slides=SplitObject(object = d.all,split.by = "stim")
  
  names(d.all);dim(d.all)
  d.all@meta.data %>%head()
  head(colnames(d.all))
  #1 给d.all 添加meta信息------
  adata_obs=read.csv("~/silicosis/spatial/adata_obs.csv")
  head(adata_obs)
  mymeta=  paste0(d.all@meta.data$orig.ident,"_",colnames(d.all))  %>% gsub("-.*","",.)  # %>%  head()
  head(mymeta)
  tail(mymeta)
  
  #掉-及其之后内容
  adata_obs$col= adata_obs$spot_id %>% gsub("-.*","",.)    # %>%  head()
  head(adata_obs)
  
  rownames(adata_obs)=adata_obs$col
  adata_obs=adata_obs[mymeta,]
  head(adata_obs)
  identical(mymeta,adata_obs$col)
  d.all=AddMetaData(d.all,metadata = adata_obs)
  head(d.all@meta.data)}

##构建画热图对象---
Idents(d.all)=d.all$clusters
a=AverageExpression(d.all,return.seurat = TRUE)
a$orig.ident=rownames(a@meta.data)
head(a@meta.data)
head(markers)

rownames(a) %>%head()
head(mygenes)
table(mygenes %in% rownames(a))
DoHeatmap(a,draw.lines = FALSE, slot = 'scale.data', group.by = 'orig.ident',
          features = mygenes ) + 
  ggplot2:: scale_color_discrete(name = "Identity", labels =  unique(a$orig.ident) %>%sort()  )



##doheatmap做出来的图不好调整,换成heatmap自己调整

p=DoHeatmap(a,draw.lines = FALSE, slot = 'scale.data', group.by = 'orig.ident',
          features = mygenes ) + 
  ggplot2:: scale_color_discrete( labels =  unique(a$orig.ident) %>%sort()  ) #name = "Identity",

p$data %>%head()


##########这种方式容易出现bug,不建议------
if (F) {
  
    wide_data <- p$data %>% .[,-4] %>%
      tidyr:: pivot_wider(names_from = Cell, values_from = Expression)
    
    print(wide_data)  
    
    mydata=  wide_data %>%
      dplyr:: select(-Feature) %>%
      as.matrix()
    head(mydata)
    rownames(mydata)=wide_data$Feature
    mydata=mydata[,c("Bronchial zone", "Fibrogenic zone",   "Interstitial zone",  "Inflammatory zone","Vascular zone"  )]
    
    p2=pheatmap::  pheatmap(mydata, fontsize_row = 2, 
                            clustering_method = "ward.D2",
                            #     annotation_col = wide_data$Feature,
                            annotation_colors = c("Interstitial zone" = "red", "Bronchial zone" = "blue", "Fibrogenic zone" = "green", "Vascular zone" = "purple") ,
                            cluster_cols = FALSE,
                            column_order = c("Inflammatory zone", "Vascular zone"  ,"Bronchial zone", "Fibrogenic zone"   )
    )
    
    getwd()
    ggplot2::ggsave(filename = "~/silicosis/spatial/sp_cluster_rigions_after_harmony/heatmap_usingpheatmap.pdf",width = 8,height = 10,limitsize = FALSE,plot = p2)
    
    
   
}



##########建议如下方式画热图------
a$orig.ident=a@meta.data %>%rownames()
a@meta.data %>%head()
Idents(a)=a$orig.ident
 
a@assays$Spatial@scale.data  %>%head()

mydata=a@assays$Spatial@scale.data
mydata=mydata[rownames(mydata) %in% (mygenes %>%unlist() %>%unique()) ,]
mydata= mydata[,c( "Fibrogenic zone",  "Inflammatory zone",   "Bronchial zone","Interstitial zone","Vascular zone"  )]
head(mydata)
p3=pheatmap::  pheatmap(mydata, fontsize_row = 2,  
                    clustering_method = "ward.D2",
                    #     annotation_col = wide_data$Feature,
                    annotation_colors = c("Interstitial zone" = "red", "Bronchial zone" = "blue", "Fibrogenic zone" = "green", "Vascular zone" = "purple") ,
                    cluster_cols = FALSE,
                    column_order = c("Inflammatory zone", "Vascular zone"  ,"Bronchial zone", "Fibrogenic zone"   )
)

getwd()
ggplot2::ggsave(filename = "~/silicosis/spatial/sp_cluster_rigions_after_harmony/heatmap_usingpheatmap2.pdf",width = 8,height = 10,limitsize = FALSE,plot = p3)



#########单独画出炎症区和纤维化区---------
a@assays$Spatial@scale.data  %>%head()

mydata=a@assays$Spatial@scale.data
mygenes2= my_genelist[c('Inflammatory zone','Fibrogenic zone')] %>%  unlist() %>% stringr::str_split("/",simplify = TRUE) 

mydata2=mydata[rownames(mydata) %in% ( mygenes2 %>%unlist() %>%unique()) ,]
mydata2= mydata2[,c( "Fibrogenic zone",  "Inflammatory zone" )]
head(mydata2)

p3=pheatmap::  pheatmap(mydata2, fontsize_row = 5,  #scale = 'row',
                         clustering_method = "ward.D2",
                        #     annotation_col = wide_data$Feature,
                        annotation_colors = c("Interstitial zone" = "red", "Bronchial zone" = "blue", "Fibrogenic zone" = "green", "Vascular zone" = "purple") ,
                        cluster_cols = FALSE,
                        column_order = c("Inflammatory zone", "Vascular zone"  ,"Bronchial zone", "Fibrogenic zone"   )
)

getwd()
ggplot2::ggsave(filename = "~/silicosis/spatial/sp_cluster_rigions_after_harmony/heatmap_usingpheatmap3.pdf",width = 4,height = 8,limitsize = FALSE,plot = p3)


文章来源:https://blog.csdn.net/qq_52813185/article/details/135562972
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。