2023年11月3日
#algebra
在对向量做线性变换时,向量空间的某个向量的方向不发生改变,而只是在其方向上进行拉伸,则该向量是线性变换的特征向量,其在变换中被拉伸的倍数为该特征向量的特征值(特征根)。
矩阵的相同特征值有其对应的代数重数与几何重数,相同特征值的代数重数就是相同特征值的个数,几何重数就是相同特征值所对应特征向量的个数。显然,特征向量的拉伸量可能相同,即代数重数大于等于几何重数,也就是多个相同特征值可能对应一个特征向量。也可以说,对同一个特征值,可能有多个特征向量,而该特征值的代数重数大于等于特征向量的个数。
如果每个相同的特征值都对应不同的特征向量,则代数重数等于几何重数。
对于
n
×
n
n\times n
n×n 矩阵
A
A
A,有
l
l
l 个特征根,
l
<
n
l\lt n
l<n 且第
i
i
i 个特征根
λ
i
\lambda_i
λi? 的代数重数为
σ
i
\sigma_i
σi? 、几何重数为
α
i
\alpha_i
αi?
det
?
(
λ
I
n
?
A
)
=
(
λ
?
λ
1
)
σ
1
(
λ
?
λ
2
)
σ
2
?
(
λ
?
λ
l
)
σ
l
\det (\lambda I_n-A)=(\lambda-\lambda_1)^{\sigma_1}(\lambda-\lambda_2)^{\sigma_2}\cdots(\lambda-\lambda_l)^{\sigma_l}
det(λIn??A)=(λ?λ1?)σ1?(λ?λ2?)σ2??(λ?λl?)σl?
第
i
i
i个特征根的几何重数计算如下:
α
i
=
n
?
rank
(
λ
i
I
n
?
A
)
\alpha_i=n-\text{rank}(\lambda_iI_n-A)
αi?=n?rank(λi?In??A)
几何重数(零化度)对应着有几个线性无关的特征向量拥有当前的特征值。
在Jordan标准型中,几何重数对应着当前特征值拥有几个Jordan快。
若代数重数等于几何重数,该特征值为 半单的。
若代数重数大于几何重数,该特征值为 亏损的。
显然,代数重数为
1
{1}
1 的特征值一定时半单的;不同特征值对应的特征向量是线性无关的。每个特征值都是半单的矩阵(有完备的特征向量系)等价于可对角化。
存在亏损的特征值的矩阵称为亏损矩阵,等价于不可对角化。
举例,对代数重数为
σ
i
=
5
\sigma_i=5
σi?=5 、几何重数为
α
i
=
2
\alpha_i=2
αi?=2 的特征根
λ
i
\lambda_i
λi?,有两个Jordan快,设存在一个三阶和一个两阶的Jordan块:
J
i
=
[
λ
i
1
0
0
0
0
λ
i
1
0
0
0
0
λ
i
0
0
0
0
0
λ
i
1
0
0
0
0
λ
i
]
=
diag
(
J
3
(
λ
i
)
,
J
2
(
λ
i
)
)
J_{i}= \begin{bmatrix} \lambda_i&1&0&0&0\\ 0&\lambda_i&1&0&0\\ 0&0&\lambda_i&0&0\\ 0&0&0&\lambda_i&1\\ 0&0&0&0&\lambda_i \end{bmatrix}=\text{diag}(J_3(\lambda_i),J_2(\lambda_i))
Ji?=
?λi?0000?1λi?000?01λi?00?000λi?0?0001λi??
?=diag(J3?(λi?),J2?(λi?))
Jordan块的顺序可以交换。知道特征值的代数重数和几何重数,还需要知道特征值对应的每阶Jordan块的个数,才能写出Jordan标准型。
可以通过幂零矩阵确定
λ
i
\lambda_i
λi? 对应的两个Jordan快各有几阶,如其中
j
j
j 阶Jordan块的个数为:
r
j
+
1
+
r
j
?
1
?
2
r
j
r_{j+1}+r_{j-1}-2r_j
rj+1?+rj?1??2rj?
r
j
=
rank
(
λ
i
I
?
A
)
j
r_j=\text{rank}(\lambda_iI-A)^j
rj?=rank(λi?I?A)j
r
0
=
rank
(
λ
i
I
?
A
)
0
=
n
r_0=\text{rank}(\lambda_iI-A)^0=n
r0?=rank(λi?I?A)0=n
矩阵的Jordan标准型
J
=
diag
(
J
n
1
,
J
n
2
,
?
?
,
J
n
k
)
,
?
n
1
+
n
2
+
?
+
n
k
=
n
J=\text{diag}(J_{n_1},J_{n_2},\cdots,J_{n_k}),~n_1+n_2+\cdots+n_k=n
J=diag(Jn1??,Jn2??,?,Jnk??),?n1?+n2?+?+nk?=n
Jordan块的上次对角元值都为
1
{1}
1
J
n
i
=
[
λ
i
1
λ
i
1
?
?
λ
i
1
λ
i
]
J_{n_i}= \begin{bmatrix} \lambda_i&1&&&\\ &\lambda_i&1&&\\ &&\ddots&\ddots&\\ &&&\lambda_i&1\\&&&&\lambda_i \end{bmatrix}
Jni??=
?λi??1λi??1???λi??1λi??
?
在这种定义下,不同Jordan块可能对应相同特征值。求Jordan标准型步骤如下:
[!example]-
求矩阵 A A A 的Jordan标准型
A = [ 2 0 ? 1 0 ? 1 1 0 ? 1 0 0 2 0 1 1 1 3 ] A= \begin{bmatrix} 2 & 0 & -1 & 0 \\ -1 & 1 & 0 & -1 \\ 0 & 0 & 2 & 0\\ 1 & 1 & 1 & 3 \end{bmatrix} A= ?2?101?0101??1021?0?103? ?
解:
det ? ( λ I ? A ) = ( λ ? 2 ) 4 \det ( \lambda I-A)=( \lambda-2)^4 det(λI?A)=(λ?2)4
λ 1 = λ 2 = λ 3 = λ 4 = 2 ?? , ?? 4 ? rank ( λ 1 I ? A ) = 2 \lambda_1= \lambda_2 = \lambda_3= \lambda_4=2 \,\,,\,\, 4- \text{rank} ( \lambda_1I-A)=2 λ1?=λ2?=λ3?=λ4?=2,4?rank(λ1?I?A)=2
2 2 2 特征值的代数重数是 4 {4} 4 ,几何重数是 2 {2} 2 ,有两个Jordan块,可能是一个三阶和一个一阶的,也可能是两个二阶的。
r 0 = 4 r 1 = rank ( λ 1 I ? A ) = 2 r 2 = rank ( λ 1 I ? A ) 2 = 0 r 3 = rank ( λ 1 I ? A ) 3 = 0 \begin{align*} r_0=&4 \\ \\ r_1=& \text{rank}( \lambda_1I-A)=2 \\ \\ r_2=& \text{rank} ( \lambda_1I-A)^2=0 \\ \\ r_3=& \text{rank} ( \lambda_1I-A)^3=0 \\ \\ \end{align*} r0?=r1?=r2?=r3?=?4rank(λ1?I?A)=2rank(λ1?I?A)2=0rank(λ1?I?A)3=0?
2 2 2 特征值对应的一阶Jordan块个数
r 2 + r 0 ? 2 r 1 = 0 r_2+r_0-2r_1=0 r2?+r0??2r1?=0
2 2 2 特征值对应的二阶Jordan块个数
r 3 + r 1 ? 2 r 2 = 2 r_3+r_1-2r_2=2 r3?+r1??2r2?=2
所以有两个二阶Jordan块,Jordan标准型为
J = [ 2 1 0 0 0 2 0 0 0 0 2 1 0 0 0 2 ] J= \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 2 \end{bmatrix} J= ?2000?1200?0020?0012? ?
Jordan块减去特征值单位阵拥有幂零的特性:
(
J
n
i
?
λ
i
I
n
i
)
n
i
=
0
(J_{n_i}- \lambda_iI_{n_i})^{n_i}=0
(Jni???λi?Ini??)ni?=0
由于一个特征值可能对应多个Jordan块,我们选择一个特征值的最大Jordan块的阶数,做为最小多项式中该特征值对应因子的幂次,得到最小多项式。例如
A
=
[
λ
1
1
0
0
0
0
λ
1
1
0
0
0
0
λ
1
0
0
0
0
0
λ
1
0
0
0
0
0
λ
2
]
A= \begin{bmatrix} \lambda_1 & 1 & 0 & 0&0 \\ 0 & \lambda_1 & 1 & 0&0 \\ 0 &0 & \lambda_1 & 0&0\\ 0 & 0& 0 & \lambda_1&0\\0 & 0& 0& 0& \lambda2 \end{bmatrix}
A=
?λ1?0000?1λ1?000?01λ1?00?000λ1?0?0000λ2?
?
特征多项式为
Δ
(
λ
)
=
det
?
(
λ
I
?
A
)
=
(
λ
?
λ
1
)
4
(
λ
?
λ
2
)
\Delta( \lambda)=\det( \lambda I-A)=( \lambda- \lambda_1)^4( \lambda- \lambda_2)
Δ(λ)=det(λI?A)=(λ?λ1?)4(λ?λ2?)
最小多项式为
ψ
(
λ
)
=
(
λ
?
λ
1
)
3
(
λ
?
λ
2
)
\psi( \lambda)=( \lambda- \lambda_1)^3( \lambda- \lambda_2)
ψ(λ)=(λ?λ1?)3(λ?λ2?)
所有相似矩阵都有相同的最小多项式。
一类是每个特征值代数重数与几何重数相等的矩阵,又称非退化矩阵或简单矩阵、可对角化矩阵,其Jordan标准型是对角阵。
另一类是每个特征值的几何重数都为
1
{1}
1 的矩阵,也就是一个特征值对应一个Jordan块,各Jordan块对应的特征值互异,又称循环矩阵。
显然,循环矩阵的特征多项式与最小多项式相同。
对
n
{n}
n 阶方阵
A
A
A,存在
n
{n}
n 阶可逆矩阵
T
T
T,使得
A
=
T
J
T
?
1
A=TJT^{-1}
A=TJT?1
为矩阵Jordan分解,
J
J
J 为矩阵的Jordan标准型,若不计Jordan块的次序,则Jordan标准型唯一。
对变换矩阵,可以写为矩阵的集合
T
=
(
T
1
,
T
2
,
?
?
,
T
k
)
T=(T_1,T_2,\cdots,T_k)
T=(T1?,T2?,?,Tk?),
T
i
T_i
Ti? 为
n
×
n
i
n\times n_i
n×ni? 阶矩阵。
A
(
T
1
,
T
2
,
?
?
,
T
k
)
=
(
T
1
,
T
2
,
?
?
,
T
k
)
[
J
n
1
?
J
n
k
]
A(T_1,T_2,\cdots,T_k)=(T_1,T_2,\cdots,T_k) \begin{bmatrix}J_{n_1}&&\\&\ddots\\&&J_{n_k}\end{bmatrix}
A(T1?,T2?,?,Tk?)=(T1?,T2?,?,Tk?)
?Jn1?????Jnk???
?
A
T
i
=
T
i
J
n
i
=
(
t
1
i
,
t
2
i
,
?
?
,
t
n
i
i
)
[
λ
i
1
λ
i
1
?
?
λ
i
1
λ
i
]
AT_i=T_iJ_{n_i}=(t_1^i,t_2^i,\cdots,t_{n_i}^i) \begin{bmatrix} \lambda_i&1&&&\\ &\lambda_i&1&&\\ &&\ddots&\ddots&\\ &&&\lambda_i&1\\&&&&\lambda_i \end{bmatrix}
ATi?=Ti?Jni??=(t1i?,t2i?,?,tni?i?)
?λi??1λi??1???λi??1λi??
?
所以
{
A
t
1
i
=
λ
i
t
1
i
A
t
2
i
=
λ
i
t
2
i
+
t
1
i
?
A
t
n
i
i
=
λ
i
t
n
i
i
+
t
n
i
?
1
i
\begin{cases} At_1^i=\lambda_it_1^i \\ At_2^i=\lambda_it_2^i+t_1^i\\ \vdots\\ At_{n_i}^i=\lambda_it_{n_i}^i+t_{n_i-1}^i \end{cases}
?
?
??At1i?=λi?t1i?At2i?=λi?t2i?+t1i??Atni?i?=λi?tni?i?+tni??1i??
(
A
?
λ
i
I
n
)
t
1
i
=
0
(A-\lambda_iI_n)t_1^i=0
(A?λi?In?)t1i?=0
(
A
?
λ
i
I
n
)
t
j
i
=
t
j
?
1
i
,
?
j
=
2
,
3
?
?
,
n
i
(A-\lambda_iI_n)t_j^i=t_{j-1}^i,~j=2,3\cdots,n_i
(A?λi?In?)tji?=tj?1i?,?j=2,3?,ni?
t
1
i
,
t
2
i
,
?
?
,
t
n
i
i
t_1^i,t_2^i,\cdots,t_{n_i}^i
t1i?,t2i?,?,tni?i? 构成一条关于
λ
i
\lambda_i
λi?的长度为
n
i
n_i
ni?的Jordan链。
t
1
i
t_1^i
t1i? 是链首,是
A
A
A 关于
λ
i
\lambda_i
λi? 的一个特征向量。
链首满足是特征向量,且方程组可解的要求。所以把
λ
i
\lambda_i
λi? 对应的所有线性无关的特征向量算出来,做线性组合,作为链首。变换矩阵
T
T
T 的求解步骤如下
[!example]-
A A A 的Jordan标准型
A = [ 3 0 8 3 ? 1 6 ? 2 0 ? 5 ] ?? , ?? J = [ ? 1 0 0 0 ? 1 1 0 0 ? 1 ] A= \begin{bmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{bmatrix} \,\,,\,\, J= \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix} A= ?33?2?0?10?86?5? ?,J= ??100?0?10?01?1? ?
求出 λ 1 \lambda_1 λ1? 对应的线性无关的特征向量
x 1 = ( 2 , 0 , ? 1 ) T ?? , ?? x 2 = ( 0 , 1 , 0 ) T x_1=(2,0,-1)^ \mathrm T \,\,,\,\, x_2=(0,1,0)^ \mathrm T x1?=(2,0,?1)T,x2?=(0,1,0)T
对应的变换矩阵为 x 1 x_1 x1? 和 x 2 x_2 x2? 的线性组合,我们选取 x 1 x_1 x1?。对于阶数为 2 {2} 2 的Jordan块,构造 y = k 1 x 1 + k 2 x 2 y=k_1x_1+k_2x_2 y=k1?x1?+k2?x2? 使得 ( A ? λ 1 I ) Z = y (A- \lambda_1I)Z=y (A?λ1?I)Z=y 可解,即
rank ( A ? λ 1 I ) = rank ( A ? λ 1 I ? ∣ ? y ) \text{rank}(A- \lambda_1I)= \text{rank}(A- \lambda_1I\,|\,y) rank(A?λ1?I)=rank(A?λ1?I∣y)
( A ? λ 1 I ? ∣ ? y ) = [ 4 0 8 2 k 1 3 0 6 k 2 ? 2 0 ? 4 ? k 1 ] → [ 4 0 8 2 k 1 0 0 0 k 2 ? 3 k 1 / 2 0 0 0 0 ] (A- \lambda_1I\,|\,y) = \begin{bmatrix} 4 & 0 & 8 & 2k_1 \\ 3 & 0 & 6& k_2 \\ -2 & 0 & -4 &-k_1 \end{bmatrix} \to \begin{bmatrix} 4 & 0 & 8 & 2k_1 \\ 0 & 0 & 0& k_2-3k_1/2 \\ 0 & 0 &0 &0 \end{bmatrix} (A?λ1?I∣y)= ?43?2?000?86?4?2k1?k2??k1?? ?→ ?400?000?800?2k1?k2??3k1?/20? ?
需要 2 k 2 ? 3 k 1 = 0 2k_2-3k_1=0 2k2??3k1?=0 ,取 k 1 = 2 ?? , ?? k 2 = 3 ?? , ?? y = ( 4 , 3 , ? 2 ) T k_1=2 \,\,,\,\, k_2=3 \,\,,\,\, y=(4,3,-2)^ \mathrm T k1?=2,k2?=3,y=(4,3,?2)T, 解出 z = ( 1 , 0 , 0 ) T z=(1,0,0)^ \mathrm T z=(1,0,0)T,鼓变换矩阵为
T = [ 2 4 1 0 3 0 ? 1 ? 2 0 ] T= \begin{bmatrix} 2 & 4 & 1 \\ 0 & 3 & 0 \\ -1 & -2 & 0 \end{bmatrix} T= ?20?1?43?2?100? ?
Jordan分解用于计算初等函数在某个矩阵处的值,最简单的情形是计算多项式函数(高次多项式),当然也可以用Cayley-Hamilton定理。
[!example]-
设矩阵
A = [ ? 1 0 1 1 2 0 ? 4 0 3 ] A= \begin{bmatrix} -1 & 0 & 1 \\ 1 & 2 & 0 \\ -4 & 0 & 3 \end{bmatrix} A= ??11?4?020?103? ?
求 A 2018 A^{2018} A2018。
解:
T ? 1 A T = J = [ 1 1 0 0 1 0 0 0 2 ] → A 2018 = T J 2018 T ? 1 \begin{align*} T^{-1}AT=J= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \end{align*}\to A^{2018}=TJ^{2018}T^{-1} T?1AT=J= ?100?110?002? ??→A2018=TJ2018T?1
A 2018 = [ 1 0 0 ? 1 ? 1 1 2 1 0 ] [ 1 2018 0 0 1 0 0 0 2 2018 ] [ 1 0 0 ? 2 0 1 ? 1 1 1 ] = [ ? 4035 0 2018 4037 ? 2 2018 2 2018 2 2018 ? 2019 ? 8072 0 4037 ] \begin{align*} A^{2018}=& \begin{bmatrix} 1 & 0 & 0 \\ -1 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2018 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{2018} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \\ \\=& \begin{bmatrix} -4035 & 0 & 2018 \\ 4037-2^{2018} & 2^{2018} & 2^{2018}-2019 \\ -8072 & 0 & 4037 \end{bmatrix} \end{align*} A2018==? ?1?12?0?11?010? ? ?100?201810?0022018? ? ?1?2?1?001?011? ? ??40354037?22018?8072?0220180?201822018?20194037? ??
Jordan分解还可以用于求解一阶线性常系数微分方程组。
[! example]-
求解
{ d d t x 1 = 3 x 1 + x 2 ? 3 d d t x 2 = ? 2 x 2 + 2 x 3 d d t x 3 = ? x 1 + x 2 + 3 x 3 \begin{cases} \frac{\mathrm d }{\mathrm dt}x_1=3x_1+x_2-3 \\ \frac{\mathrm d }{\mathrm dt}x_2=-2x_2+2x_3\\ \frac{\mathrm d }{\mathrm dt}x_3=-x_1+x_2+3x_3 \end{cases} ? ? ??dtd?x1?=3x1?+x2??3dtd?x2?=?2x2?+2x3?dtd?x3?=?x1?+x2?+3x3??
解:令 x = ( x 1 , x 2 , x 3 ) T x=(x_1,x_2,x_3)^ \mathrm T x=(x1?,x2?,x3?)T ,则原方程组化为
d x d t = A x \frac{\mathrm d x}{\mathrm dt}=Ax dtdx?=Ax
令 x = T y x=Ty x=Ty,则
d y d t = T ? 1 d x d t = T ? 1 A x = T ? 1 A T y = J y \frac{\mathrm d y}{\mathrm dt}= T^{-1}\frac{\mathrm d x}{\mathrm dt}=T^{-1}Ax=T^{-1}ATy=Jy dtdy?=T?1dtdx?=T?1Ax=T?1ATy=Jy
A = [ 3 1 ? 1 ? 2 0 2 ? 1 ? 1 3 ] ?? , ?? J = [ 2 0 0 0 2 1 0 0 2 ] A= \begin{bmatrix} 3 & 1 & -1 \\ -2 & 0 & 2 \\ -1 & -1 & 3 \end{bmatrix} \,\,,\,\, J= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} A= ?3?2?1?10?1??123? ?,J= ?200?020?012? ?
∴ J y = [ 2 y 1 2 y 2 + y 3 2 y 3 ] → y 1 ′ = 2 y 1 ?? , ?? y 2 ′ = 2 y 2 + y 3 ?? , ?? y 3 ′ = 2 y 3 \therefore Jy= \begin{bmatrix} 2y_1\\ 2y_2+y_3\\ 2y_3 \end{bmatrix}\to y_1'=2y_1 \,\,,\,\, y_2'=2y_2+y_3 \,\,,\,\, y_3'=2y_3 ∴Jy= ?2y1?2y2?+y3?2y3?? ?→y1′?=2y1?,y2′?=2y2?+y3?,y3′?=2y3?
y y y 第一第三个分量的一般解为
y 1 ( t ) = c 1 e 2 t ?? , ?? y 3 ( t ) = c 3 e 2 t y_1(t)=c_1e^{2t} \,\,,\,\, y_3(t)=c_3e^{2t} y1?(t)=c1?e2t,y3?(t)=c3?e2t
代入第二个分量求解得
y 2 ( t ) = ( c 2 + c 3 t ) e 2 t y_2(t)=(c_2+c_3t)e^{2t} y2?(t)=(c2?+c3?t)e2t
x = T y = [ ? e 2 t ( c 1 + c 2 + c 3 + c 3 t ) e 2 t ( c 1 + 2 c 2 + 2 c 3 t ) e 2 t ( c 2 + c 3 t ) ] ?? , ?? ? c 1 , c 2 , c 3 ∈ C x=Ty= \begin{bmatrix} -e^{2t}(c_1+c_2+c_3+c_3t)\\ e^{2t}(c_1+2c_2+2c_3t)\\ e^{2t}(c_2+c_3t) \end{bmatrix} \,\,,\,\, \forall c_1,c_2,c_3\in \mathbb C x=Ty= ??e2t(c1?+c2?+c3?+c3?t)e2t(c1?+2c2?+2c3?t)e2t(c2?+c3?t)? ?,?c1?,c2?,c3?∈C
Jordan块、Jordan标准型及矩阵的Jordan分解
矩阵论 武汉理工大学 (亲测最好的矩阵论视频)